Skip to main content
main-content
Top

Hint

Swipe to navigate through the chapters of this book

2021 | OriginalPaper | Chapter

Computing Classical Modular Forms for Arbitrary Congruence Subgroups

share
SHARE

Abstract

In this paper, we prove the existence of an efficient algorithm for the computation of systems of Hecke eigenvalues of modular forms of weight k and level Γ, where \(\Gamma \subseteq SL_{2}({\mathbb {Z}})\) is an arbitrary congruence subgroup. We also discuss some practical aspects and provide the necessary theoretical background.
Literature
3.
go back to reference A Oliver L Atkin et al. Twists of newforms and pseudo-eigenvalues of W-operators. Inventiones mathematicae, 48(3):221–243, 1978. MathSciNetCrossRef A Oliver L Atkin et al. Twists of newforms and pseudo-eigenvalues of W-operators. Inventiones mathematicae, 48(3):221–243, 1978. MathSciNetCrossRef
4.
go back to reference Barinder Banwait and John Cremona. Tetrahedral elliptic curves and the local-global principle for isogenies. Algebra & Number Theory, 8(5):1201–1229, 2014. MathSciNetCrossRef Barinder Banwait and John Cremona. Tetrahedral elliptic curves and the local-global principle for isogenies. Algebra & Number Theory, 8(5):1201–1229, 2014. MathSciNetCrossRef
5.
go back to reference Burcu Baran. Normalizers of non-split Cartan subgroups, modular curves, and the class number one problem. Journal of Number Theory, 130(12):2753–2772, 2010. MathSciNetCrossRef Burcu Baran. Normalizers of non-split Cartan subgroups, modular curves, and the class number one problem. Journal of Number Theory, 130(12):2753–2772, 2010. MathSciNetCrossRef
6.
go back to reference Burcu Baran. An exceptional isomorphism between modular curves of level 13. Journal of Number Theory, 145:273–300, 2014. MathSciNetCrossRef Burcu Baran. An exceptional isomorphism between modular curves of level 13. Journal of Number Theory, 145:273–300, 2014. MathSciNetCrossRef
7.
go back to reference Alex J. Best, Jonathan Bober, Andrew R. Booker, Edgar Costa, John E. Cremona, Maarten Derickx, Min Lee, David Lowry-Duda, David Roe, Andrew V. Sutherland, and John Voight. Computing classical modular forms. In Arithmetic Geometry, Number Theory, and Computation, pages 131--214. Springer, Cham, 2021. https://​doi.​org/​10.​1007/​978-3-030-80914-0_​4 Alex J. Best, Jonathan Bober, Andrew R. Booker, Edgar Costa, John E. Cremona, Maarten Derickx, Min Lee, David Lowry-Duda, David Roe, Andrew V. Sutherland, and John Voight. Computing classical modular forms. In Arithmetic Geometry, Number Theory, and Computation, pages 131--214. Springer, Cham, 2021. https://​doi.​org/​10.​1007/​978-3-030-80914-0_​4
8.
go back to reference Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system I: The user language. Journal of Symbolic Computation, 24(3–4):235–265, 1997. MathSciNetCrossRef Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system I: The user language. Journal of Symbolic Computation, 24(3–4):235–265, 1997. MathSciNetCrossRef
9.
go back to reference Josha Box. Computing models for quotients of modular curves. Res. Number Theory 7(3):51, 2021. Josha Box. Computing models for quotients of modular curves. Res. Number Theory 7(3):51, 2021.
10.
go back to reference Kevin Buzzard. Computing weight one modular forms over \(\mathbb {C}\) and \(\overline {\mathbb {f}}_{p}\). In Computations with modular forms, pages 129–146. Springer, 2014. Kevin Buzzard. Computing weight one modular forms over \(\mathbb {C}\) and \(\overline {\mathbb {f}}_{p}\). In Computations with modular forms, pages 129–146. Springer, 2014.
11.
go back to reference Jean-Marc Couveignes and Bas Edixhoven. Computational aspects of modular forms and Galois representations. Princeton University Press, 2011. MATH Jean-Marc Couveignes and Bas Edixhoven. Computational aspects of modular forms and Galois representations. Princeton University Press, 2011. MATH
12.
go back to reference John E Cremona. Algorithms for modular elliptic curves. 2nd edition. Cambridge University Press, Cambridge, 1997. John E Cremona. Algorithms for modular elliptic curves. 2nd edition. Cambridge University Press, Cambridge, 1997.
14.
go back to reference Fred Diamond and Jerry Michael Shurman. A first course in modular forms, volume 228. Springer, 2005. Fred Diamond and Jerry Michael Shurman. A first course in modular forms, volume 228. Springer, 2005.
15.
go back to reference Valerio Dose, Julio Fernández, Josep González, and René Schoof. The automorphism group of the non-split Cartan modular curve of level 11. Journal of Algebra, 417:95–102, 2014. MathSciNetCrossRef Valerio Dose, Julio Fernández, Josep González, and René Schoof. The automorphism group of the non-split Cartan modular curve of level 11. Journal of Algebra, 417:95–102, 2014. MathSciNetCrossRef
16.
go back to reference Enrique González-Jiménez and Roger Oyono. Non-hyperelliptic modular curves of genus 3. Journal of Number Theory, 130(4):862–878, 2010. MathSciNetCrossRef Enrique González-Jiménez and Roger Oyono. Non-hyperelliptic modular curves of genus 3. Journal of Number Theory, 130(4):862–878, 2010. MathSciNetCrossRef
17.
go back to reference Lloyd JP Kilford. Modular forms: a classical and computational introduction. Mathematical intelligencer, 32(3):58–59, 2010. Lloyd JP Kilford. Modular forms: a classical and computational introduction. Mathematical intelligencer, 32(3):58–59, 2010.
18.
go back to reference Ravi S Kulkarni. An arithmetic-geometric method in the study of the subgroups of the modular group. American Journal of mathematics, 113(6):1053–1133, 1991. Ravi S Kulkarni. An arithmetic-geometric method in the study of the subgroups of the modular group. American Journal of mathematics, 113(6):1053–1133, 1991.
19.
go back to reference Ju I Manin. Parabolic points and zeta-functions of modular curves. Mathematics of the USSR-Izvestiya, 6(1):19, 1972. Ju I Manin. Parabolic points and zeta-functions of modular curves. Mathematics of the USSR-Izvestiya, 6(1):19, 1972.
20.
go back to reference Barry Mazur. Rational points on modular curves. In Modular functions of one variable V, pages 107–148. Springer, 1977. Barry Mazur. Rational points on modular curves. In Modular functions of one variable V, pages 107–148. Springer, 1977.
21.
go back to reference Pietro Mercuri and René Schoof. Modular forms invariant under non-split Cartan subgroups. Mathematics of Computation, 89(324):1969–1991, 2020. MathSciNetCrossRef Pietro Mercuri and René Schoof. Modular forms invariant under non-split Cartan subgroups. Mathematics of Computation, 89(324):1969–1991, 2020. MathSciNetCrossRef
22.
go back to reference Loïc Merel. Opérateurs de Hecke pour Γ 0( N) et fractions continues. In Annales de l’institut Fourier, volume 41, pages 519–537, 1991. Loïc Merel. Opérateurs de Hecke pour Γ 0( N) et fractions continues. In Annales de l’institut Fourier, volume 41, pages 519–537, 1991.
23.
go back to reference Loïc Merel. Universal Fourier expansions of modular forms. In On Artin’s Conjecture for Odd 2-Dimensional Representations, pages 59–94. Springer, 1994. Loïc Merel. Universal Fourier expansions of modular forms. In On Artin’s Conjecture for Odd 2-Dimensional Representations, pages 59–94. Springer, 1994.
24.
go back to reference James S Milne. Introduction to Shimura varieties. Harmonic analysis, the trace formula, and Shimura varieties, 4:265–378, 2005. James S Milne. Introduction to Shimura varieties. Harmonic analysis, the trace formula, and Shimura varieties, 4:265–378, 2005.
25.
go back to reference Andrew Ogg. Modular forms and Dirichlet series. WA Benjamin New York, 1969. Andrew Ogg. Modular forms and Dirichlet series. WA Benjamin New York, 1969.
26.
go back to reference Jeremy Rouse and David Zureick-Brown. Elliptic curves over \(\mathbb {Q} \) and 2-adic images of galois. Research in Number Theory, 1(1):12, 2015. Jeremy Rouse and David Zureick-Brown. Elliptic curves over \(\mathbb {Q} \) and 2-adic images of galois. Research in Number Theory, 1(1):12, 2015.
27.
go back to reference George J Schaeffer. Hecke stability and weight 1 modular forms. Mathematische Zeitschrift, 281(1-2):159–191, 2015. George J Schaeffer. Hecke stability and weight 1 modular forms. Mathematische Zeitschrift, 281(1-2):159–191, 2015.
28.
go back to reference Jean-Pierre Serre. Propriétés galoisiennes des points d’ordre fini des courbes elliptiques. Invent. math, 15:259–331, 1972. MathSciNetCrossRef Jean-Pierre Serre. Propriétés galoisiennes des points d’ordre fini des courbes elliptiques. Invent. math, 15:259–331, 1972. MathSciNetCrossRef
29.
go back to reference Goro Shimura. Introduction to the arithmetic theory of automorphic functions, volume 1. Princeton University Press, 1971. MATH Goro Shimura. Introduction to the arithmetic theory of automorphic functions, volume 1. Princeton University Press, 1971. MATH
30.
go back to reference Vyacheslav Vladimirovich Shokurov. The study of the homology of Kuga varieties. Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 44(2):443–464, 1980. Vyacheslav Vladimirovich Shokurov. The study of the homology of Kuga varieties. Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 44(2):443–464, 1980.
31.
go back to reference William A Stein. An introduction to computing modular forms using modular symbols. In An MSRI Proceedings, 2002. William A Stein. An introduction to computing modular forms using modular symbols. In An MSRI Proceedings, 2002.
32.
go back to reference William A Stein. Modular forms, a computational approach, volume 79. American Mathematical Soc., 2007. William A Stein. Modular forms, a computational approach, volume 79. American Mathematical Soc., 2007.
33.
go back to reference William Arthur Stein. Explicit approaches to modular abelian varieties. PhD thesis, University of California, Berkeley, 2000. William Arthur Stein. Explicit approaches to modular abelian varieties. PhD thesis, University of California, Berkeley, 2000.
34.
go back to reference Andrew Sutherland and David Zywina. Modular curves of prime-power level with infinitely many rational points. Algebra & Number Theory, 11(5):1199–1229, 2017. MathSciNetCrossRef Andrew Sutherland and David Zywina. Modular curves of prime-power level with infinitely many rational points. Algebra & Number Theory, 11(5):1199–1229, 2017. MathSciNetCrossRef
35.
go back to reference John A Todd and Harold SM Coxeter. A practical method for enumerating cosets of a finite abstract group. Proceedings of the Edinburgh Mathematical Society, 5(1):26–34, 1936. John A Todd and Harold SM Coxeter. A practical method for enumerating cosets of a finite abstract group. Proceedings of the Edinburgh Mathematical Society, 5(1):26–34, 1936.
36.
go back to reference John Voight. Quaternion Algebras. Graduate Texts in Mathematics, 288. Springer, 2021. John Voight. Quaternion Algebras. Graduate Texts in Mathematics, 288. Springer, 2021.
37.
go back to reference Gabor Wiese et al. Modular forms of weight one over finite fields. PhD thesis, Stieltjes Institute for Mathematics, Faculty of Mathematics and Natural Sciences, 2005. Gabor Wiese et al. Modular forms of weight one over finite fields. PhD thesis, Stieltjes Institute for Mathematics, Faculty of Mathematics and Natural Sciences, 2005.
38.
go back to reference David Zywina. Computing actions on cusp forms. arXiv preprint arXiv:2001.07270, 2020. David Zywina. Computing actions on cusp forms. arXiv preprint arXiv:2001.07270, 2020.
Metadata
Title
Computing Classical Modular Forms for Arbitrary Congruence Subgroups
Author
Eran Assaf
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-80914-0_2

Premium Partner