Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

01-08-2015 | Issue 4/2015

Cognitive Computation 4/2015

Concept-Level Sentiment Analysis with Dependency-Based Semantic Parsing: A Novel Approach

Journal:
Cognitive Computation > Issue 4/2015
Authors:
Basant Agarwal, Soujanya Poria, Namita Mittal, Alexander Gelbukh, Amir Hussain

Abstract

Sentiment analysis from unstructured natural language text has recently received considerable attention from the research community. In the frame of biologically inspired machine learning approaches, finding good feature sets is particularly challenging yet very important. In this paper, we focus on this fundamental issue of the sentiment analysis task. Specifically, we employ concepts as features and present a concept extraction algorithm based on a novel concept parser scheme to extract semantic features that exploit semantic relationships between words in natural language text. Additional conceptual information of a concept is obtained using the ConceptNet ontology: Concepts extracted from text are sent as queries to ConceptNet to extract their semantics. We select important concepts and eliminate redundant concepts using the Minimum Redundancy and Maximum Relevance feature selection technique. All selected concepts are then used to build a machine learning model that classifies a given document as positive or negative. We evaluate our concept extraction approach using a benchmark movie review dataset provided by Cornell University and product review datasets on books, DVDs, and electronics. Comparative experimental results show that our proposed approach to sentiment analysis outperforms existing state-of-the-art methods.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 4/2015

Cognitive Computation 4/2015 Go to the issue

Premium Partner

    Image Credits