Skip to main content
Top
Published in: Metals and Materials International 4/2019

02-01-2019

Conceptual Study for Tissue-Regenerative Biodegradable Magnesium Implant Integrated with Nitric Oxide-Releasing Nanofibers

Authors: Jin-Kyung Jeon, Hyunseon Seo, Jimin Park, Soo Ji Son, Yeong Rim Kim, Eun Shil Kim, Jong Woong Park, Woong-Gyo Jung, Hojeong Jeon, Yu-Chan Kim, Hyun-Kwang Seok, Jae Ho Shin, Myoung-Ryul Ok

Published in: Metals and Materials International | Issue 4/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The excessive initial corrosion rate of Mg is a critical limitation in the clinical application of biodegradable Mg implants because the device loses its fixation strength before the fractured bone heals. This study suggests a new approach to overcome this hurdle by accelerating tissue regeneration instead of delaying the implant biodegradation. As angiogenesis is an essential process in early bone regeneration, a Mg implant coated with electrospun nanofibers containing nitric oxide (NO), which physiologically promotes angiogenesis, is designed. The integrated device enables adjustable amounts of NO to be stored on the NO donor-conjugated nanofiber coating, stably delivered, and released to the fractured bone tissue near the implanted sites. An in vitro corrosion test reveals no adverse effect of the released NO on the corrosion behavior of the Mg implant. Simultaneously, the optimal concentration level of NO released from the implant significantly enhances tube network formation of human umbilical vein endothelial cells without any cytotoxicity problem. This indicates that angiogenesis can be accelerated by combining NO-releasing nanofibers with a Mg implant. With its proven feasibility, the proposed approach could be a novel solution for the initial stability problem of biodegradable Mg implants, leading to successful bone fixation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Q. Chen, G.A. Thouas, Metallic implant biomaterials. Mater. Sci. Eng. R 87, 1–57 (2015)CrossRef Q. Chen, G.A. Thouas, Metallic implant biomaterials. Mater. Sci. Eng. R 87, 1–57 (2015)CrossRef
2.
go back to reference X.N. Gu, S.S. Li, X.M. Li, Y.B. Fan, Magnesium based degradable biomaterials: a review. Front. Mater. Sci. 8, 200–218 (2014)CrossRef X.N. Gu, S.S. Li, X.M. Li, Y.B. Fan, Magnesium based degradable biomaterials: a review. Front. Mater. Sci. 8, 200–218 (2014)CrossRef
3.
go back to reference F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C. Wirth, H. Windhagen, In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 26, 3557–3563 (2005)CrossRef F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C. Wirth, H. Windhagen, In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 26, 3557–3563 (2005)CrossRef
4.
go back to reference M.P. Staiger, A.M. Pietak, J. Huadmai, G. Dias, Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 27, 1728–1734 (2006)CrossRef M.P. Staiger, A.M. Pietak, J. Huadmai, G. Dias, Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 27, 1728–1734 (2006)CrossRef
5.
go back to reference M. Salahshoor, Y. Guo, Biodegradable orthopedic magnesium-calcium (MgCa) alloys, processing, and corrosion performance. Materials 5, 135–155 (2012)CrossRef M. Salahshoor, Y. Guo, Biodegradable orthopedic magnesium-calcium (MgCa) alloys, processing, and corrosion performance. Materials 5, 135–155 (2012)CrossRef
6.
go back to reference H. Waizy, J.-M. Seitz, J. Reifenrath, A. Weizbauer, F.-W. Bach, A. Meyer-Lindenberg, B. Denkena, H. Windhagen, Biodegradable magnesium implants for orthopedic applications. J. Mater. Sci. 48, 39–50 (2013)CrossRef H. Waizy, J.-M. Seitz, J. Reifenrath, A. Weizbauer, F.-W. Bach, A. Meyer-Lindenberg, B. Denkena, H. Windhagen, Biodegradable magnesium implants for orthopedic applications. J. Mater. Sci. 48, 39–50 (2013)CrossRef
7.
go back to reference A. Atrens, M. Liu, N.I.Z. Abidin, Corrosion mechanism applicable to biodegradable magnesium implants. Mater. Sci. Eng. B 176, 1609–1636 (2011)CrossRef A. Atrens, M. Liu, N.I.Z. Abidin, Corrosion mechanism applicable to biodegradable magnesium implants. Mater. Sci. Eng. B 176, 1609–1636 (2011)CrossRef
8.
go back to reference J.-W. Lee, H.-S. Han, K.-J. Han, J. Park, H. Jeon, M.-R. Ok, H.-K. Seok, J.-P. Ahn, K.E. Lee, D.-H. Lee, S.J. Yang, S.Y. Cho, P.R. Cha, H. Kwon, T.H. Nam, J.H. Han, H.J. Rho, K.S. Lee, Y.C. Kim, D. Mantovani, Long-term clinical study and multiscale analysis of in vivo biodegradation mechanism of Mg alloy. Proc. Natl. Acad. Sci. USA 113, 716–721 (2016)CrossRef J.-W. Lee, H.-S. Han, K.-J. Han, J. Park, H. Jeon, M.-R. Ok, H.-K. Seok, J.-P. Ahn, K.E. Lee, D.-H. Lee, S.J. Yang, S.Y. Cho, P.R. Cha, H. Kwon, T.H. Nam, J.H. Han, H.J. Rho, K.S. Lee, Y.C. Kim, D. Mantovani, Long-term clinical study and multiscale analysis of in vivo biodegradation mechanism of Mg alloy. Proc. Natl. Acad. Sci. USA 113, 716–721 (2016)CrossRef
9.
go back to reference G. Song, Control of biodegradation of biocompatable magnesium alloys. Corros. Sci. 49, 1696–1701 (2007)CrossRef G. Song, Control of biodegradation of biocompatable magnesium alloys. Corros. Sci. 49, 1696–1701 (2007)CrossRef
10.
go back to reference T. Karus, S.F. Fischerauer, A.C. Hänzi, P.J. Uggowitzer, J.F. Löffler, A.M. Weinberg, Magnesium alloys for temporary implants in osteosynthesis: in vivo studies of their degradation and interaction with bone. Acta Biomater. 8, 1230–1238 (2012)CrossRef T. Karus, S.F. Fischerauer, A.C. Hänzi, P.J. Uggowitzer, J.F. Löffler, A.M. Weinberg, Magnesium alloys for temporary implants in osteosynthesis: in vivo studies of their degradation and interaction with bone. Acta Biomater. 8, 1230–1238 (2012)CrossRef
11.
go back to reference S. Yoshizawa, A. Brown, A. Barchowsky, C. Sfeir, Magnesium ion stimulation of bone marrow stromal cells enhances osteogenic activity, simulating the effect of magnesium alloy degradation. Acta Biomater. 10, 2834–2842 (2014)CrossRef S. Yoshizawa, A. Brown, A. Barchowsky, C. Sfeir, Magnesium ion stimulation of bone marrow stromal cells enhances osteogenic activity, simulating the effect of magnesium alloy degradation. Acta Biomater. 10, 2834–2842 (2014)CrossRef
12.
go back to reference J. Vormann, Magnesium: nutrition and metabolism. Mol. Aspects Med. 24, 27–37 (2003)CrossRef J. Vormann, Magnesium: nutrition and metabolism. Mol. Aspects Med. 24, 27–37 (2003)CrossRef
13.
go back to reference H. Zreiqat, C. Howlett, A. Zannettino, P. Evans, G. Schulze-Tanzil, C. Knabe, M. Shakibaei, Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. J. Biomed. Mater. Res. Part A 62, 175–184 (2002)CrossRef H. Zreiqat, C. Howlett, A. Zannettino, P. Evans, G. Schulze-Tanzil, C. Knabe, M. Shakibaei, Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. J. Biomed. Mater. Res. Part A 62, 175–184 (2002)CrossRef
14.
go back to reference Y. Yamasaki, Y. Yoshida, M. Okazaki, A. Shimazu, T. Uchida, T. Kubo, Y. Akagawa, Y. Hamada, J. Takahashi, N. Matsuura, Synthesis of functionally graded MgCO3 apatite accelerating osteoblast adhesion. J. Biomed. Mater. Res. Part A 62, 99–105 (2002)CrossRef Y. Yamasaki, Y. Yoshida, M. Okazaki, A. Shimazu, T. Uchida, T. Kubo, Y. Akagawa, Y. Hamada, J. Takahashi, N. Matsuura, Synthesis of functionally graded MgCO3 apatite accelerating osteoblast adhesion. J. Biomed. Mater. Res. Part A 62, 99–105 (2002)CrossRef
15.
go back to reference G.L. Song, A.A. Atrens, Corrosion mechanisms of magnesium alloys. Adv. Eng. Mater. 1, 11–33 (1999)CrossRef G.L. Song, A.A. Atrens, Corrosion mechanisms of magnesium alloys. Adv. Eng. Mater. 1, 11–33 (1999)CrossRef
16.
go back to reference P.R. Cha, H.S. Han, G.F. Yang, Y.C. Kim, K.H. Hong, S.C. Lee, J.Y. Jung, J.P. Ahn, Y.Y. Kim, S.Y. Cho, J.Y. Byun, K.S. Lee, S.J. Yang, H.K. Seok, Biodegradability engineering of biodegradable Mg alloys: tailoring the electrochemical properties and microstructure of constituent phases. Sci. Rep. 3, 2367 (2013). https://doi.org/10.1038/srep02367 CrossRef P.R. Cha, H.S. Han, G.F. Yang, Y.C. Kim, K.H. Hong, S.C. Lee, J.Y. Jung, J.P. Ahn, Y.Y. Kim, S.Y. Cho, J.Y. Byun, K.S. Lee, S.J. Yang, H.K. Seok, Biodegradability engineering of biodegradable Mg alloys: tailoring the electrochemical properties and microstructure of constituent phases. Sci. Rep. 3, 2367 (2013). https://​doi.​org/​10.​1038/​srep02367 CrossRef
17.
go back to reference G.F. Yang, Y.C. Kim, H.S. Han, G.C. Lee, H.K. Seok, J.C. Lee, In vitro dynamic degradation behavior of new magnesium alloy for orthopedic applications. J. Biomed. Mater. Res. Part B 103, 807 (2015)CrossRef G.F. Yang, Y.C. Kim, H.S. Han, G.C. Lee, H.K. Seok, J.C. Lee, In vitro dynamic degradation behavior of new magnesium alloy for orthopedic applications. J. Biomed. Mater. Res. Part B 103, 807 (2015)CrossRef
18.
go back to reference R.A. Carano, E.H. Filvaroff, Angiogenesis and bone repair. Drug Discov. Today 8, 980–989 (2003)CrossRef R.A. Carano, E.H. Filvaroff, Angiogenesis and bone repair. Drug Discov. Today 8, 980–989 (2003)CrossRef
19.
go back to reference H.-P. Gerber, T.H. Vu, A.M. Ryan, J. Kowalski, Z. Werb, N. Ferrara, VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat. Med. 5, 623–628 (1999)CrossRef H.-P. Gerber, T.H. Vu, A.M. Ryan, J. Kowalski, Z. Werb, N. Ferrara, VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat. Med. 5, 623–628 (1999)CrossRef
20.
go back to reference J. Street, M. Bao, S. Bunting, F.V. Peale, N. Ferrara, H. Steinmetz, J. Hoeffel, J.L. Cleland, A. Daugherty, N. van Bruggen, Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc. Natl. Acad. Sci. USA 99, 9656–9661 (2002)CrossRef J. Street, M. Bao, S. Bunting, F.V. Peale, N. Ferrara, H. Steinmetz, J. Hoeffel, J.L. Cleland, A. Daugherty, N. van Bruggen, Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc. Natl. Acad. Sci. USA 99, 9656–9661 (2002)CrossRef
21.
go back to reference J. Kanczler, R. Oreffo, Osteogenesis and angiogenesis: the potential for engineering bone. Eur. Cells Mater. 15, 100–114 (2008)CrossRef J. Kanczler, R. Oreffo, Osteogenesis and angiogenesis: the potential for engineering bone. Eur. Cells Mater. 15, 100–114 (2008)CrossRef
22.
go back to reference T.D. Fang, A. Salim, W. Xia, R.P. Nacamuli, S. Guccione, H.M. Song, R.A. Carano, E.H. Filvaroff, M.D. Bednarski, A.J. Giaccia, Angiogenesis is required for successful bone induction during distraction osteogenesis. J. Bone Miner. Res. 20, 1114–1124 (2005)CrossRef T.D. Fang, A. Salim, W. Xia, R.P. Nacamuli, S. Guccione, H.M. Song, R.A. Carano, E.H. Filvaroff, M.D. Bednarski, A.J. Giaccia, Angiogenesis is required for successful bone induction during distraction osteogenesis. J. Bone Miner. Res. 20, 1114–1124 (2005)CrossRef
23.
go back to reference A.W. Carpenter, M.H. Schoenfisch, Nitric oxide release: part II. Therapeutic applications. Chem. Soc. Rev. 41, 3742–3752 (2012)CrossRef A.W. Carpenter, M.H. Schoenfisch, Nitric oxide release: part II. Therapeutic applications. Chem. Soc. Rev. 41, 3742–3752 (2012)CrossRef
24.
go back to reference P.D. Ray, B.-W. Huang, Y. Tsuji, Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal. 24, 981–990 (2012)CrossRef P.D. Ray, B.-W. Huang, Y. Tsuji, Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal. 24, 981–990 (2012)CrossRef
25.
go back to reference B.C. Dickinson, C.J. Chang, Chemistry and biology of reactive oxygen species in signaling or stress responses. Nat. Chem. Biol. 7, 504–511 (2011)CrossRef B.C. Dickinson, C.J. Chang, Chemistry and biology of reactive oxygen species in signaling or stress responses. Nat. Chem. Biol. 7, 504–511 (2011)CrossRef
26.
go back to reference C.C. Winterbourn, Reconciling the chemistry and biology of reactive oxygen species. Nat. Chem. Biol. 4, 278–286 (2008)CrossRef C.C. Winterbourn, Reconciling the chemistry and biology of reactive oxygen species. Nat. Chem. Biol. 4, 278–286 (2008)CrossRef
27.
go back to reference T. Finkel, Signal transduction by reactive oxygen species. J. Cell Biol. 194, 7–15 (2011)CrossRef T. Finkel, Signal transduction by reactive oxygen species. J. Cell Biol. 194, 7–15 (2011)CrossRef
28.
go back to reference C. Xia, Q. Meng, L.-Z. Liu, Y. Rojanasakul, X.-R. Wang, B.-H. Jiang, Reactive oxygen species regulate angiogenesis and tumor growth through vascular endothelial growth factor. Cancer Res. 67, 10823–10830 (2007)CrossRef C. Xia, Q. Meng, L.-Z. Liu, Y. Rojanasakul, X.-R. Wang, B.-H. Jiang, Reactive oxygen species regulate angiogenesis and tumor growth through vascular endothelial growth factor. Cancer Res. 67, 10823–10830 (2007)CrossRef
29.
go back to reference R. Zhang, L. Wang, L. Zhang, J. Chen, Z. Zhu, Z. Zhang, M. Chopp, Nitric oxide enhances angiogenesis via the synthesis of vascular endothelial growth factor and cGMP after stroke in the rat. Circ. Res. 92, 308–313 (2003)CrossRef R. Zhang, L. Wang, L. Zhang, J. Chen, Z. Zhu, Z. Zhang, M. Chopp, Nitric oxide enhances angiogenesis via the synthesis of vascular endothelial growth factor and cGMP after stroke in the rat. Circ. Res. 92, 308–313 (2003)CrossRef
30.
go back to reference A. Papapetropoulos, G. García-Cardeña, J.A. Madri, W.C. Sessa, Nitric oxide production contributes to the angiogenic properties of vascular endothelial growth factor in human endothelial cells. J. Clin. Investig. 100, 3131–3139 (1997)CrossRef A. Papapetropoulos, G. García-Cardeña, J.A. Madri, W.C. Sessa, Nitric oxide production contributes to the angiogenic properties of vascular endothelial growth factor in human endothelial cells. J. Clin. Investig. 100, 3131–3139 (1997)CrossRef
31.
go back to reference A.D. Diwan, M.X. Wang, D. Jang, W. Zhu, G.A. Murrell, Nitric oxide modulates fracture healing. J. Bone Miner. Res. 15, 342–351 (2000)CrossRef A.D. Diwan, M.X. Wang, D. Jang, W. Zhu, G.A. Murrell, Nitric oxide modulates fracture healing. J. Bone Miner. Res. 15, 342–351 (2000)CrossRef
32.
go back to reference J.H. Shin, S.K. Metzger, M.H. Schoenfisch, Synthesis of nitric oxide-releasing silica nanoparticles. J. Am. Chem. Soc. 129, 4612–4619 (2007)CrossRef J.H. Shin, S.K. Metzger, M.H. Schoenfisch, Synthesis of nitric oxide-releasing silica nanoparticles. J. Am. Chem. Soc. 129, 4612–4619 (2007)CrossRef
33.
go back to reference M.E. Robbins, E.D. Hopper, M.H. Schoenfisch, Synthesis and characterization of nitric oxide-releasing sol–gel microarrays. Langmuir 20, 10296–10302 (2004)CrossRef M.E. Robbins, E.D. Hopper, M.H. Schoenfisch, Synthesis and characterization of nitric oxide-releasing sol–gel microarrays. Langmuir 20, 10296–10302 (2004)CrossRef
34.
go back to reference M. Miller, I. Megson, Recent developments in nitric oxide donor drugs. Br. J. Pharmacol. 151, 305–321 (2007)CrossRef M. Miller, I. Megson, Recent developments in nitric oxide donor drugs. Br. J. Pharmacol. 151, 305–321 (2007)CrossRef
35.
go back to reference W. He, H.-K. Kim, W.G. Wamer, D. Melka, J.H. Callahan, J.-J. Yin, Photogenerated charge carriers and reactive oxygen species in ZnO/Au hybrid nanostructures with enhanced photocatalytic and antibacterial activity. J. Am. Chem. Soc. 136, 750–757 (2013)CrossRef W. He, H.-K. Kim, W.G. Wamer, D. Melka, J.H. Callahan, J.-J. Yin, Photogenerated charge carriers and reactive oxygen species in ZnO/Au hybrid nanostructures with enhanced photocatalytic and antibacterial activity. J. Am. Chem. Soc. 136, 750–757 (2013)CrossRef
36.
go back to reference J. Macak, F. Schmidt-Stein, P. Schmuki, Efficient oxygen reduction on layers of ordered TiO2 nanotubes loaded with Au nanoparticles. Electrochem. Commun. 9, 1783–1787 (2007)CrossRef J. Macak, F. Schmidt-Stein, P. Schmuki, Efficient oxygen reduction on layers of ordered TiO2 nanotubes loaded with Au nanoparticles. Electrochem. Commun. 9, 1783–1787 (2007)CrossRef
37.
go back to reference Y. Li, W. Zhang, J. Niu, Y. Chen, Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano 6, 5164–5173 (2012)CrossRef Y. Li, W. Zhang, J. Niu, Y. Chen, Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano 6, 5164–5173 (2012)CrossRef
38.
go back to reference J. Park, P. Du, J.K. Jeon, G.H. Jang, M.P. Hwang, H.S. Han, K. Park, K.H. Lee, J.W. Lee, H. Jeon, Y.C. Kim, J.W. Park, H.K. Seok, M.-R. Ok, Magnesium corrosion triggered spontaneous generation of H2O2 on oxidized titanium for promoting angiogenesis. Angew. Chem. Int. Ed. Engl. 54, 14753–14757 (2015)CrossRef J. Park, P. Du, J.K. Jeon, G.H. Jang, M.P. Hwang, H.S. Han, K. Park, K.H. Lee, J.W. Lee, H. Jeon, Y.C. Kim, J.W. Park, H.K. Seok, M.-R. Ok, Magnesium corrosion triggered spontaneous generation of H2O2 on oxidized titanium for promoting angiogenesis. Angew. Chem. Int. Ed. Engl. 54, 14753–14757 (2015)CrossRef
39.
go back to reference S.M. Marxer, A.R. Rothrock, B.J. Nablo, M.E. Robbins, M.H. Schoenfisch, Preparation of nitric oxide (NO)-releasing sol–gels for biomaterial applications. Chem. Mater. 15, 4193–4199 (2003)CrossRef S.M. Marxer, A.R. Rothrock, B.J. Nablo, M.E. Robbins, M.H. Schoenfisch, Preparation of nitric oxide (NO)-releasing sol–gels for biomaterial applications. Chem. Mater. 15, 4193–4199 (2003)CrossRef
40.
go back to reference D.A. Riccio, M.H. Schoenfisch, Nitric oxide release: part I. Macromolecular scaffolds. Chem. Soc. Rev. 41, 3731–3741 (2012)CrossRef D.A. Riccio, M.H. Schoenfisch, Nitric oxide release: part I. Macromolecular scaffolds. Chem. Soc. Rev. 41, 3731–3741 (2012)CrossRef
41.
go back to reference J. Saraiva, S.S. Marotta-Oliveira, S.A. Cicillini, J.D.O. Eloy, J.M. Marchetti, Nanocarriers for nitric oxide delivery. J. Drug Deliv. 2011, 936438 (2011)CrossRef J. Saraiva, S.S. Marotta-Oliveira, S.A. Cicillini, J.D.O. Eloy, J.M. Marchetti, Nanocarriers for nitric oxide delivery. J. Drug Deliv. 2011, 936438 (2011)CrossRef
42.
go back to reference T.P. Misko, R. Schilling, D. Salvemini, W. Moore, M. Currie, A fluorometric assay for the measurement of nitrite in biological samples. Anal. Biochem. 214, 11–16 (1993)CrossRef T.P. Misko, R. Schilling, D. Salvemini, W. Moore, M. Currie, A fluorometric assay for the measurement of nitrite in biological samples. Anal. Biochem. 214, 11–16 (1993)CrossRef
43.
go back to reference R.J. Holland, J.R. Klose, J.R. Deschamps, Z. Cao, L.K. Keefer, J.E. Saavedra, Direct reaction of amides with nitric oxide to form diazeniumdiolates. J. Org. Chem. 79, 9389–9393 (2014)CrossRef R.J. Holland, J.R. Klose, J.R. Deschamps, Z. Cao, L.K. Keefer, J.E. Saavedra, Direct reaction of amides with nitric oxide to form diazeniumdiolates. J. Org. Chem. 79, 9389–9393 (2014)CrossRef
44.
go back to reference J.A. Maier, D. Bernardini, Y. Rayssiguier, A. Mazur, High concentrations of magnesium modulate vascular endothelial cell behaviour in vitro. Biochim. Biophys. Acta Mol. Basis Dis. 1689, 6–12 (2004)CrossRef J.A. Maier, D. Bernardini, Y. Rayssiguier, A. Mazur, High concentrations of magnesium modulate vascular endothelial cell behaviour in vitro. Biochim. Biophys. Acta Mol. Basis Dis. 1689, 6–12 (2004)CrossRef
45.
go back to reference M. Shechter, M. Sharir, M.J.P. Labrador, J. Forrester, B. Silver, C.N.B. Merz, Oral magnesium therapy improves endothelial function in patients with coronary artery disease. Circulation 102, 2353–2358 (2000)CrossRef M. Shechter, M. Sharir, M.J.P. Labrador, J. Forrester, B. Silver, C.N.B. Merz, Oral magnesium therapy improves endothelial function in patients with coronary artery disease. Circulation 102, 2353–2358 (2000)CrossRef
Metadata
Title
Conceptual Study for Tissue-Regenerative Biodegradable Magnesium Implant Integrated with Nitric Oxide-Releasing Nanofibers
Authors
Jin-Kyung Jeon
Hyunseon Seo
Jimin Park
Soo Ji Son
Yeong Rim Kim
Eun Shil Kim
Jong Woong Park
Woong-Gyo Jung
Hojeong Jeon
Yu-Chan Kim
Hyun-Kwang Seok
Jae Ho Shin
Myoung-Ryul Ok
Publication date
02-01-2019
Publisher
The Korean Institute of Metals and Materials
Published in
Metals and Materials International / Issue 4/2019
Print ISSN: 1598-9623
Electronic ISSN: 2005-4149
DOI
https://doi.org/10.1007/s12540-018-00232-9

Other articles of this Issue 4/2019

Metals and Materials International 4/2019 Go to the issue

Premium Partners