Skip to main content
Top

2019 | OriginalPaper | Chapter

6. Conclusion

Authors : Nilanjan Dey, Amira S. Ashour, Waleed S. Mohamed, Nhu Gia Nguyen

Published in: Acoustic Sensors for Biomedical Applications

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This book introduces the basic definitions of the sensors, the biosensors and their features, and the equivalent components, amplifiers, filters, and bio-measurement systems for further circuit design. It describes and categorizes the mainstream acoustic wave biosensors, including the utilization of the bulk acoustic waves and analysis devices, which imply surface acoustic waves. In addition, the use of the piezoelectric substrates of the acoustic sensors design is included. The different types of the biosensors are presented. Several applications of the acoustic biosensors are introduced.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Gopalsamy, C., Park, S., Rajamanickam, R., & Jayaraman, S. (1999). The Wearable Motherboard™: The first generation of adaptive and responsive textile structures (ARTS) for medical applications. Virtual Reality, 4(3), 152–168.CrossRef Gopalsamy, C., Park, S., Rajamanickam, R., & Jayaraman, S. (1999). The Wearable Motherboard™: The first generation of adaptive and responsive textile structures (ARTS) for medical applications. Virtual Reality, 4(3), 152–168.CrossRef
2.
go back to reference Penner, A., Doron, E., & Porat, Y. (2001). U.S. Patent No. 6,198,965. Washington, DC: U.S. Patent and Trademark Office. Penner, A., Doron, E., & Porat, Y. (2001). U.S. Patent No. 6,198,965. Washington, DC: U.S. Patent and Trademark Office.
3.
go back to reference Mba, D., & Rao, R. B. (2006). Development of acoustic emission technology for condition monitoring and diagnosis of rotating machines; bearings, pumps, gearboxes, engines and rotating structures. The Shock and Vibration Digest, 38(1), 3–16.CrossRef Mba, D., & Rao, R. B. (2006). Development of acoustic emission technology for condition monitoring and diagnosis of rotating machines; bearings, pumps, gearboxes, engines and rotating structures. The Shock and Vibration Digest, 38(1), 3–16.CrossRef
4.
go back to reference Chourasia, V. S., & Tiwari, A. K. (2012). Wireless data acquisition system for fetal phonocardiographic signals using BluetoothTM. International Journal of Computers in Healthcare, 1(3), 240–253.CrossRef Chourasia, V. S., & Tiwari, A. K. (2012). Wireless data acquisition system for fetal phonocardiographic signals using BluetoothTM. International Journal of Computers in Healthcare, 1(3), 240–253.CrossRef
5.
go back to reference Sa-Ngasoongsong, A., Kunthong, J., Sarangan, V., Cai, X., & Bukkapatnam, S. T. (2012). A low-cost, portable, high-throughput wireless sensor system for phonocardiography applications. Sensors, 12(8), 10851–10870.CrossRef Sa-Ngasoongsong, A., Kunthong, J., Sarangan, V., Cai, X., & Bukkapatnam, S. T. (2012). A low-cost, portable, high-throughput wireless sensor system for phonocardiography applications. Sensors, 12(8), 10851–10870.CrossRef
6.
go back to reference Zhang, Y., Fogoros, R., Haro, C., Dalal, Y., Brockway, M., & Siejko, K. Z. (2011). U.S. Patent No. 7,922,669. Washington, DC: U.S. Patent and Trademark Office. Zhang, Y., Fogoros, R., Haro, C., Dalal, Y., Brockway, M., & Siejko, K. Z. (2011). U.S. Patent No. 7,922,669. Washington, DC: U.S. Patent and Trademark Office.
7.
go back to reference Semmlow, J., & Rahalkar, K. (2007). Acoustic detection of coronary artery disease. Annual Review of Biomedical Engineering, 9, 449–469.CrossRef Semmlow, J., & Rahalkar, K. (2007). Acoustic detection of coronary artery disease. Annual Review of Biomedical Engineering, 9, 449–469.CrossRef
8.
go back to reference Miles, R. N., & Hoy, R. R. (2006). The development of a biologically-inspired directional microphone for hearing aids. Audiology and Neurotology, 11(2), 86–94.CrossRef Miles, R. N., & Hoy, R. R. (2006). The development of a biologically-inspired directional microphone for hearing aids. Audiology and Neurotology, 11(2), 86–94.CrossRef
9.
go back to reference Bertrand, A., & Moonen, M. Robust distributed noise reduction in hearing aids with external acoustic sensor nodes. EURASIP Journal on Advances in Signal Processing, 2009, 2009, 12. Bertrand, A., & Moonen, M. Robust distributed noise reduction in hearing aids with external acoustic sensor nodes. EURASIP Journal on Advances in Signal Processing, 2009, 2009, 12.
10.
go back to reference Ko, W. H., Zhang, R., Huang, P., Guo, J., Ye, X., Young, D. J., & Megerian, C. A. (2009). Studies of MEMS acoustic sensors as implantable microphones for totally implantable hearing-aid systems. IEEE Transactions on Biomedical Circuits and Systems, 3(5), 277–285.CrossRef Ko, W. H., Zhang, R., Huang, P., Guo, J., Ye, X., Young, D. J., & Megerian, C. A. (2009). Studies of MEMS acoustic sensors as implantable microphones for totally implantable hearing-aid systems. IEEE Transactions on Biomedical Circuits and Systems, 3(5), 277–285.CrossRef
11.
go back to reference Doclo, S., Gannot, S., Moonen, M., & Spriet, A. (2010). Acoustic beamforming for hearing aid applications. In Handbook on array processing and sensor networks (pp. 269–302). Hoboken: Wiley-IEEE.CrossRef Doclo, S., Gannot, S., Moonen, M., & Spriet, A. (2010). Acoustic beamforming for hearing aid applications. In Handbook on array processing and sensor networks (pp. 269–302). Hoboken: Wiley-IEEE.CrossRef
12.
go back to reference Maglogiannis, I., Loukis, E., Zafiropoulos, E., & Stasis, A. (2009). Support vectors machine-based identification of heart valve diseases using heart sounds. Computer Methods and Programs in Biomedicine, 95(1), 47–61.CrossRef Maglogiannis, I., Loukis, E., Zafiropoulos, E., & Stasis, A. (2009). Support vectors machine-based identification of heart valve diseases using heart sounds. Computer Methods and Programs in Biomedicine, 95(1), 47–61.CrossRef
13.
go back to reference Hu, T., & Fei, Y. (2010). QELAR: A machine-learning-based adaptive routing protocol for energy-efficient and lifetime-extended underwater sensor networks. IEEE Transactions on Mobile Computing, 9(6), 796–809.CrossRef Hu, T., & Fei, Y. (2010). QELAR: A machine-learning-based adaptive routing protocol for energy-efficient and lifetime-extended underwater sensor networks. IEEE Transactions on Mobile Computing, 9(6), 796–809.CrossRef
14.
go back to reference Yatani, K., & Truong, K. N. (2012, September). BodyScope: A wearable acoustic sensor for activity recognition. In Proceedings of the 2012 ACM Conference on Ubiquitous Computing (pp. 341–350). ACM. Yatani, K., & Truong, K. N. (2012, September). BodyScope: A wearable acoustic sensor for activity recognition. In Proceedings of the 2012 ACM Conference on Ubiquitous Computing (pp. 341–350). ACM.
15.
go back to reference Palaniappan, R., Sundaraj, K., & Ahamed, N. U. (2013). Machine learning in lung sound analysis: A systematic review. Biocybernetics and Biomedical Engineering, 33(3), 129–135.CrossRef Palaniappan, R., Sundaraj, K., & Ahamed, N. U. (2013). Machine learning in lung sound analysis: A systematic review. Biocybernetics and Biomedical Engineering, 33(3), 129–135.CrossRef
16.
go back to reference Özdemir, A. T., & Barshan, B. (2014). Detecting falls with wearable sensors using machine learning techniques. Sensors, 14(6), 10691–10708.CrossRef Özdemir, A. T., & Barshan, B. (2014). Detecting falls with wearable sensors using machine learning techniques. Sensors, 14(6), 10691–10708.CrossRef
17.
go back to reference Lane, N. D., Georgiev, P., & Qendro, L. (2015, September). DeepEar: Robust smartphone audio sensing in unconstrained acoustic environments using deep learning. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing (pp. 283–294). ACM. Lane, N. D., Georgiev, P., & Qendro, L. (2015, September). DeepEar: Robust smartphone audio sensing in unconstrained acoustic environments using deep learning. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing (pp. 283–294). ACM.
Metadata
Title
Conclusion
Authors
Nilanjan Dey
Amira S. Ashour
Waleed S. Mohamed
Nhu Gia Nguyen
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-92225-6_6