Skip to main content
Top
Published in:
Cover of the book

2017 | OriginalPaper | Chapter

Conducting Polymer Nanocomposites: Recent Developments and Future Prospects

Authors : Changyu Tang, Nanxi Chen, Xin Hu

Published in: Conducting Polymer Hybrids

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Electrically conducting polymer nanocomposites (CPCs) consist of conductive nanofillers (e.g., metal nanoparticle, carbon nanotube, and graphene) and polymer matrices, which have become a greatly active field in the composite materials study. Due to their ease of processing, low density, tunable electrical properties, oxidation resistance, and flexibility, CPCs show versatile electrical applications such as antistatic protection, electromagnetic interference (EMI) shielding, energy storage electrode, sensors, flexible electronics, and thermoelectric devices. In this chapter, we review the recent progress and main challenges on CPCs and predict their development trend by several sections including the introduction, background, fabrication methods, the morphology control strategies, some application cases, and outlook. The key issues for successful fabrication of high-performance CPCs are discussed. Among them, the strategies on control of conductive network morphology and their effects on the electrical properties in CPCs are emphasized. Some interesting applications of CPCs based on the electroactive functions are described, and their property-related requirements are also proposed. We hope that the small review can provide a valuable reference for the researchers from academic and industry communities working on the CPCs and their functional devices.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Callister WD, Rethwisch DG (2007) Materials science and engineering: an introduction, vol 7. Wiley, New York Callister WD, Rethwisch DG (2007) Materials science and engineering: an introduction, vol 7. Wiley, New York
2.
go back to reference Chaikin PM, Lubensky TC (2000) Principles of condensed matter physics, vol 1. Cambridge University Press, Cambridge Chaikin PM, Lubensky TC (2000) Principles of condensed matter physics, vol 1. Cambridge University Press, Cambridge
3.
go back to reference Shirakawa H (2001) The discovery of polyacetylene film: the dawning of an era of conducting polymers (Nobel lecture). Angew Chem Int Ed 40:2574CrossRef Shirakawa H (2001) The discovery of polyacetylene film: the dawning of an era of conducting polymers (Nobel lecture). Angew Chem Int Ed 40:2574CrossRef
4.
go back to reference Kaur G, Adhikari R, Cass P, Bown M, Gunatillake P (2015) Electrically conductive polymers and composites for biomedical applications. RSC Advances 5:37553CrossRef Kaur G, Adhikari R, Cass P, Bown M, Gunatillake P (2015) Electrically conductive polymers and composites for biomedical applications. RSC Advances 5:37553CrossRef
5.
go back to reference Li C, Bai H, Shi G (2009) Conducting polymer nanomaterials: electrosynthesis and applications. Chem Soc Rev 38:2397CrossRef Li C, Bai H, Shi G (2009) Conducting polymer nanomaterials: electrosynthesis and applications. Chem Soc Rev 38:2397CrossRef
6.
go back to reference Oueiny C, Berlioz S, Perrin F-X (2014) Carbon nanotube–polyaniline composites. Prog Polym Sci 39:707CrossRef Oueiny C, Berlioz S, Perrin F-X (2014) Carbon nanotube–polyaniline composites. Prog Polym Sci 39:707CrossRef
7.
go back to reference Deng H, Lin L, Ji M, Zhang S, Yang M, Fu Q (2014) Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials. Prog Polym Sci 39:627CrossRef Deng H, Lin L, Ji M, Zhang S, Yang M, Fu Q (2014) Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials. Prog Polym Sci 39:627CrossRef
8.
go back to reference Sengupta R, Bhattacharya M, Bandyopadhyay S, Bhowmick AK (2011) A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog Polym Sci 36:638CrossRef Sengupta R, Bhattacharya M, Bandyopadhyay S, Bhowmick AK (2011) A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog Polym Sci 36:638CrossRef
9.
go back to reference Pang H, Xu L, Yan D-X, Li Z-M (2014) Conductive polymer composites with segregated structures. Prog Polym Sci 39:1908CrossRef Pang H, Xu L, Yan D-X, Li Z-M (2014) Conductive polymer composites with segregated structures. Prog Polym Sci 39:1908CrossRef
10.
go back to reference Ding C, Zhang H, Li X, Liu T, Xing F (2013) vanadium flow battery for energy storage: prospects and challenges. J Phys Chem Lett 4:1281CrossRef Ding C, Zhang H, Li X, Liu T, Xing F (2013) vanadium flow battery for energy storage: prospects and challenges. J Phys Chem Lett 4:1281CrossRef
11.
go back to reference Li JR, Xu JR, Zhang MQ, Rong MZ (2003) Carbon black/polystyrene composites as candidates for gas sensing materials. Carbon 41:2353CrossRef Li JR, Xu JR, Zhang MQ, Rong MZ (2003) Carbon black/polystyrene composites as candidates for gas sensing materials. Carbon 41:2353CrossRef
12.
go back to reference Grunlan JC, Mehrabi AR, Bannon MV, Bahr JL (2004) Water-based single-walled-nanotube-filled polymer composite with an exceptionally low percolation threshold. Adv Mater 16:150CrossRef Grunlan JC, Mehrabi AR, Bannon MV, Bahr JL (2004) Water-based single-walled-nanotube-filled polymer composite with an exceptionally low percolation threshold. Adv Mater 16:150CrossRef
13.
go back to reference Du J, Zhao L, Zeng Y, Zhang L, Li F, Liu P, Liu C (2011) Comparison of electrical properties between multi-walled carbon nanotube and graphene nanosheet/high density polyethylene composites with a segregated network structure. Carbon 49:1094CrossRef Du J, Zhao L, Zeng Y, Zhang L, Li F, Liu P, Liu C (2011) Comparison of electrical properties between multi-walled carbon nanotube and graphene nanosheet/high density polyethylene composites with a segregated network structure. Carbon 49:1094CrossRef
14.
go back to reference Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35:1350CrossRef Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35:1350CrossRef
15.
go back to reference Kyrylyuk AV, Hermant MC, Schilling T, Klumperman B, Koning CE, van der Schoot P (2011) Controlling electrical percolation in multicomponent carbon nanotube dispersions. Nat Nano 6:364CrossRef Kyrylyuk AV, Hermant MC, Schilling T, Klumperman B, Koning CE, van der Schoot P (2011) Controlling electrical percolation in multicomponent carbon nanotube dispersions. Nat Nano 6:364CrossRef
16.
go back to reference Munson-McGee SH (1991) Estimation of the critical concentration in an anisotropic percolation network. Phys Rev B 43:3331CrossRef Munson-McGee SH (1991) Estimation of the critical concentration in an anisotropic percolation network. Phys Rev B 43:3331CrossRef
17.
go back to reference Schadler LS (2003) Polymer-based and polymer-filled nanocomposites. Wiley, LondonCrossRef Schadler LS (2003) Polymer-based and polymer-filled nanocomposites. Wiley, LondonCrossRef
18.
go back to reference Dalmas F, Dendievel R, Chazeau L, Cavaillé J-Y, Gauthier C (2006) Carbon nanotube-filled polymer composites. Numerical simulation of electrical conductivity in three-dimensional entangled fibrous networks. Acta Mater 54:2923CrossRef Dalmas F, Dendievel R, Chazeau L, Cavaillé J-Y, Gauthier C (2006) Carbon nanotube-filled polymer composites. Numerical simulation of electrical conductivity in three-dimensional entangled fibrous networks. Acta Mater 54:2923CrossRef
19.
go back to reference Bauhofer W, Kovacs JZ (2009) A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos Sci Technol 69:1486CrossRef Bauhofer W, Kovacs JZ (2009) A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos Sci Technol 69:1486CrossRef
20.
go back to reference Cai D, Song M (2010) Recent advance in functionalized graphene/polymer nanocomposites. J Mater Chem 20:7906CrossRef Cai D, Song M (2010) Recent advance in functionalized graphene/polymer nanocomposites. J Mater Chem 20:7906CrossRef
21.
go back to reference Hermant MC, Klumperman B, Kyrylyuk AV, van der Schoot P, Koning CE (2009) Lowering the percolation threshold of single-walled carbon nanotubes using polystyrene/poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) blends. Soft Matter 5:878CrossRef Hermant MC, Klumperman B, Kyrylyuk AV, van der Schoot P, Koning CE (2009) Lowering the percolation threshold of single-walled carbon nanotubes using polystyrene/poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) blends. Soft Matter 5:878CrossRef
22.
go back to reference Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39:5194CrossRef Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39:5194CrossRef
23.
go back to reference Kovacs JZ, Velagala BS, Schulte K, Bauhofer W (2007) Two percolation thresholds in carbon nanotube epoxy composites. Compos Sci Technol 67:922CrossRef Kovacs JZ, Velagala BS, Schulte K, Bauhofer W (2007) Two percolation thresholds in carbon nanotube epoxy composites. Compos Sci Technol 67:922CrossRef
24.
go back to reference Gangopadhyay R, De A (2000) Conducting polymer nanocomposites: a brief overview. Chem Mater 12:608CrossRef Gangopadhyay R, De A (2000) Conducting polymer nanocomposites: a brief overview. Chem Mater 12:608CrossRef
25.
go back to reference Xu S, Rezvanian O, Peters K, Zikry M (2013) The viability and limitations of percolation theory in modeling the electrical behavior of carbon nanotube–polymer composites. Nanotechnology 24:155706CrossRef Xu S, Rezvanian O, Peters K, Zikry M (2013) The viability and limitations of percolation theory in modeling the electrical behavior of carbon nanotube–polymer composites. Nanotechnology 24:155706CrossRef
26.
go back to reference Stauffer D, Aharony A (1994) Introduction to percolation theory. CRC Press, Boca Raton Stauffer D, Aharony A (1994) Introduction to percolation theory. CRC Press, Boca Raton
27.
28.
go back to reference Vionnet-Menot S, Grimaldi C, Maeder T, Strässler S, Ryser P (2005) Tunneling-percolation origin of nonuniversality: theory and experiments. Phys Rev B 71:064201CrossRef Vionnet-Menot S, Grimaldi C, Maeder T, Strässler S, Ryser P (2005) Tunneling-percolation origin of nonuniversality: theory and experiments. Phys Rev B 71:064201CrossRef
29.
go back to reference Sheng P, Sichel E, Gittleman J (1978) Fluctuation-induced tunneling conduction in carbon-polyvinylchloride composites. Phys Rev Lett 40:1197CrossRef Sheng P, Sichel E, Gittleman J (1978) Fluctuation-induced tunneling conduction in carbon-polyvinylchloride composites. Phys Rev Lett 40:1197CrossRef
30.
go back to reference Yosida Y, Oguro I (1999) Variable range hopping conduction in bulk samples composed of single-walled carbon nanotubes. J Appl Phys 86:999CrossRef Yosida Y, Oguro I (1999) Variable range hopping conduction in bulk samples composed of single-walled carbon nanotubes. J Appl Phys 86:999CrossRef
31.
go back to reference Benoit J, Corraze B, Chauvet O (2002) Localization, Coulomb interactions and electrical heating in single-wall carbon nanotubes/polymer composites. arXiv preprint cond-mat/0204520 Benoit J, Corraze B, Chauvet O (2002) Localization, Coulomb interactions and electrical heating in single-wall carbon nanotubes/polymer composites. arXiv preprint cond-mat/0204520
32.
go back to reference Villmow T, Kretzschmar B, Pötschke P (2010) Influence of screw configuration, residence time, and specific mechanical energy in twin-screw extrusion of polycaprolactone/multi-walled carbon nanotube composites. Compos Sci Technol 70:2045CrossRef Villmow T, Kretzschmar B, Pötschke P (2010) Influence of screw configuration, residence time, and specific mechanical energy in twin-screw extrusion of polycaprolactone/multi-walled carbon nanotube composites. Compos Sci Technol 70:2045CrossRef
33.
go back to reference Kovacs JZ, Andresen K, Pauls JR, Garcia CP, Schossig M, Schulte K, Bauhofer W (2007) Analyzing the quality of carbon nanotube dispersions in polymers using scanning electron microscopy. Carbon 45:1279CrossRef Kovacs JZ, Andresen K, Pauls JR, Garcia CP, Schossig M, Schulte K, Bauhofer W (2007) Analyzing the quality of carbon nanotube dispersions in polymers using scanning electron microscopy. Carbon 45:1279CrossRef
34.
go back to reference Li W, Buschhorn ST, Schulte K, Bauhofer W (2011) The imaging mechanism, imaging depth, and parameters influencing the visibility of carbon nanotubes in a polymer matrix using an SEM. Carbon 49:1955CrossRef Li W, Buschhorn ST, Schulte K, Bauhofer W (2011) The imaging mechanism, imaging depth, and parameters influencing the visibility of carbon nanotubes in a polymer matrix using an SEM. Carbon 49:1955CrossRef
35.
go back to reference Li W, Bauhofer W (2011) Imaging of CNTs in a polymer matrix at low accelerating voltages using a SEM. Carbon 49:3891CrossRef Li W, Bauhofer W (2011) Imaging of CNTs in a polymer matrix at low accelerating voltages using a SEM. Carbon 49:3891CrossRef
36.
go back to reference Chang L, Friedrich K, Ye L, Toro P (2009) Evaluation and visualization of the percolating networks in multi-wall carbon nanotube/epoxy composites. J Mater Sc 44:4003CrossRef Chang L, Friedrich K, Ye L, Toro P (2009) Evaluation and visualization of the percolating networks in multi-wall carbon nanotube/epoxy composites. J Mater Sc 44:4003CrossRef
37.
go back to reference Loos J, Sourty E, Lu K, de With G, van Bavel S (2009) Imaging polymer systems with high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM). Macromolecules 42:2581CrossRef Loos J, Sourty E, Lu K, de With G, van Bavel S (2009) Imaging polymer systems with high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM). Macromolecules 42:2581CrossRef
38.
go back to reference Alig I, Skipa T, Engel M, Lellinger D, Pegel S, Pötschke P (2007) Electrical conductivity recovery in carbon nanotube–polymer composites after transient shear. Phys Status Solidi (b) 244:4223CrossRef Alig I, Skipa T, Engel M, Lellinger D, Pegel S, Pötschke P (2007) Electrical conductivity recovery in carbon nanotube–polymer composites after transient shear. Phys Status Solidi (b) 244:4223CrossRef
39.
go back to reference Pegel S, Pötschke P, Petzold G, Alig I, Dudkin SM, Lellinger D (2008) Dispersion, agglomeration, and network formation of multiwalled carbon nanotubes in polycarbonate melts. Polymer 49:974CrossRef Pegel S, Pötschke P, Petzold G, Alig I, Dudkin SM, Lellinger D (2008) Dispersion, agglomeration, and network formation of multiwalled carbon nanotubes in polycarbonate melts. Polymer 49:974CrossRef
40.
go back to reference Desbief S, Hergué N, Douhéret O, Surin M, Dubois P, Geerts Y, Lazzaroni R, Leclère P (2012) Nanoscale investigation of the electrical properties in semiconductor polymer–carbon nanotube hybrid materials. Nanoscale 4:2705CrossRef Desbief S, Hergué N, Douhéret O, Surin M, Dubois P, Geerts Y, Lazzaroni R, Leclère P (2012) Nanoscale investigation of the electrical properties in semiconductor polymer–carbon nanotube hybrid materials. Nanoscale 4:2705CrossRef
41.
go back to reference Alekseev A, Chen D, Tkalya EE, Ghislandi MG, Syurik Y, Ageev O, Loos J, de With G (2012) Local organization of graphene network inside graphene/polymer composites. Adv Funct Mater 22:1311CrossRef Alekseev A, Chen D, Tkalya EE, Ghislandi MG, Syurik Y, Ageev O, Loos J, de With G (2012) Local organization of graphene network inside graphene/polymer composites. Adv Funct Mater 22:1311CrossRef
42.
go back to reference Tkalya E, Ghislandi M, Alekseev A, Koning C, Loos J (2010) Latex-based concept for the preparation of graphene-based polymer nanocomposites. J Mater Chem 20:3035CrossRef Tkalya E, Ghislandi M, Alekseev A, Koning C, Loos J (2010) Latex-based concept for the preparation of graphene-based polymer nanocomposites. J Mater Chem 20:3035CrossRef
43.
go back to reference Deng H, Skipa T, Bilotti E, Zhang R, Lellinger D, Mezzo L, Fu Q, Alig I, Peijs T (2010) Preparation of high-performance conductive polymer fibers through morphological control of networks formed by nanofillers. Adv Funct Mater 20:1424CrossRef Deng H, Skipa T, Bilotti E, Zhang R, Lellinger D, Mezzo L, Fu Q, Alig I, Peijs T (2010) Preparation of high-performance conductive polymer fibers through morphological control of networks formed by nanofillers. Adv Funct Mater 20:1424CrossRef
44.
go back to reference Wang Z, Ciselli P, Peijs T (2007) The extraordinary reinforcing efficiency of single-walled carbon nanotubes in oriented poly (vinyl alcohol) tapes. Nanotechnology 18:455709CrossRef Wang Z, Ciselli P, Peijs T (2007) The extraordinary reinforcing efficiency of single-walled carbon nanotubes in oriented poly (vinyl alcohol) tapes. Nanotechnology 18:455709CrossRef
45.
go back to reference Abbasi S, Carreau PJ, Derdouri A (2010) Flow induced orientation of multiwalled carbon nanotubes in polycarbonate nanocomposites: rheology, conductivity and mechanical properties. Polymer 51:922CrossRef Abbasi S, Carreau PJ, Derdouri A (2010) Flow induced orientation of multiwalled carbon nanotubes in polycarbonate nanocomposites: rheology, conductivity and mechanical properties. Polymer 51:922CrossRef
46.
go back to reference Abdalla M, Dean D, Theodore M, Fielding J, Nyairo E, Price G (2010) Magnetically processed carbon nanotube/epoxy nanocomposites: morphology, thermal, and mechanical properties. Polymer 51:1614CrossRef Abdalla M, Dean D, Theodore M, Fielding J, Nyairo E, Price G (2010) Magnetically processed carbon nanotube/epoxy nanocomposites: morphology, thermal, and mechanical properties. Polymer 51:1614CrossRef
47.
go back to reference Alig I, Skipa T, Lellinger D, Pötschke P (2008) Destruction and formation of a carbon nanotube network in polymer melts: rheology and conductivity spectroscopy. Polymer 49:3524CrossRef Alig I, Skipa T, Lellinger D, Pötschke P (2008) Destruction and formation of a carbon nanotube network in polymer melts: rheology and conductivity spectroscopy. Polymer 49:3524CrossRef
48.
go back to reference Su C, Xu L, Zhang C, Zhu J (2011) Selective location and conductive network formation of multiwalled carbon nanotubes in polycarbonate/poly (vinylidene fluoride) blends. Compos Sci Technol 71:1016CrossRef Su C, Xu L, Zhang C, Zhu J (2011) Selective location and conductive network formation of multiwalled carbon nanotubes in polycarbonate/poly (vinylidene fluoride) blends. Compos Sci Technol 71:1016CrossRef
49.
go back to reference Tang H, Chen X, Luo Y (1996) Electrical and dynamic mechanical behavior of carbon black filled polymer composites. Eur Polym J 32:963CrossRef Tang H, Chen X, Luo Y (1996) Electrical and dynamic mechanical behavior of carbon black filled polymer composites. Eur Polym J 32:963CrossRef
50.
go back to reference Grunlan JC, Gerberich WW, Francis LF (2001) Lowering the percolation threshold of conductive composites using particulate polymer microstructure. J Appl Polym Sci 80:692CrossRef Grunlan JC, Gerberich WW, Francis LF (2001) Lowering the percolation threshold of conductive composites using particulate polymer microstructure. J Appl Polym Sci 80:692CrossRef
51.
go back to reference Kim D, Kim Y, Choi K, Grunlan JC, Yu C (2010) Improved thermoelectric behavior of nanotube-filled polymer composites with poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate). ACS Nano 4:513CrossRef Kim D, Kim Y, Choi K, Grunlan JC, Yu C (2010) Improved thermoelectric behavior of nanotube-filled polymer composites with poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate). ACS Nano 4:513CrossRef
52.
go back to reference Ren P-G, Di Y-Y, Zhang Q, Li L, Pang H, Li Z-M (2012) Composites of ultrahigh-molecular-weight polyethylene with graphene sheets and/or MWCNTs with segregated network structure: preparation and properties. Macromol Mater Eng 297:437CrossRef Ren P-G, Di Y-Y, Zhang Q, Li L, Pang H, Li Z-M (2012) Composites of ultrahigh-molecular-weight polyethylene with graphene sheets and/or MWCNTs with segregated network structure: preparation and properties. Macromol Mater Eng 297:437CrossRef
53.
go back to reference Regev O, ElKati PNB, Loos J, Koning CE (2004) Preparation of conductive nanotube–polymer composites using latex technology. Adv Mater 16:248CrossRef Regev O, ElKati PNB, Loos J, Koning CE (2004) Preparation of conductive nanotube–polymer composites using latex technology. Adv Mater 16:248CrossRef
54.
go back to reference Long G, Tang C, Wong K-w, Man C, Fan M, Lau W-m, Xu T, Wang B (2013) Resolving the dilemma of gaining conductivity but losing environmental friendliness in producing polystyrene/graphene composites via optimizing the matrix-filler structure. Green Chem 15:821CrossRef Long G, Tang C, Wong K-w, Man C, Fan M, Lau W-m, Xu T, Wang B (2013) Resolving the dilemma of gaining conductivity but losing environmental friendliness in producing polystyrene/graphene composites via optimizing the matrix-filler structure. Green Chem 15:821CrossRef
55.
go back to reference Mierczynska A, Mayne-L’Hermite M, Boiteux G, Jeszka JK (2007) Electrical and mechanical properties of carbon nanotube/ultrahigh-molecular-weight polyethylene composites prepared by a filler prelocalization method. J Appl Polym Sci 105:158CrossRef Mierczynska A, Mayne-L’Hermite M, Boiteux G, Jeszka JK (2007) Electrical and mechanical properties of carbon nanotube/ultrahigh-molecular-weight polyethylene composites prepared by a filler prelocalization method. J Appl Polym Sci 105:158CrossRef
56.
go back to reference Ajayan PM, Tour JM (2007) Materials science: nanotube composites. Nature 447:1066CrossRef Ajayan PM, Tour JM (2007) Materials science: nanotube composites. Nature 447:1066CrossRef
57.
go back to reference Ausman KD, Piner R, Lourie O, Ruoff RS, Korobov M (2000) Organic solvent dispersions of single-walled carbon nanotubes: toward solutions of pristine nanotubes. J Phys Chem B 104:8911CrossRef Ausman KD, Piner R, Lourie O, Ruoff RS, Korobov M (2000) Organic solvent dispersions of single-walled carbon nanotubes: toward solutions of pristine nanotubes. J Phys Chem B 104:8911CrossRef
58.
go back to reference Balasubramanian K, Burghard M (2005) Chemically functionalized carbon nanotubes. Small 1:180CrossRef Balasubramanian K, Burghard M (2005) Chemically functionalized carbon nanotubes. Small 1:180CrossRef
59.
go back to reference Grossiord N, Loos J, Regev O, Koning CE (2006) Toolbox for dispersing carbon nanotubes into polymers to get conductive nanocomposites. Chem Mater 18:1089CrossRef Grossiord N, Loos J, Regev O, Koning CE (2006) Toolbox for dispersing carbon nanotubes into polymers to get conductive nanocomposites. Chem Mater 18:1089CrossRef
60.
go back to reference Hermann A, Chaudhuri T, Spagnol P (2005) Bipolar plates for PEM fuel cells: a review. Int J Hydrog Energy 30:1297CrossRef Hermann A, Chaudhuri T, Spagnol P (2005) Bipolar plates for PEM fuel cells: a review. Int J Hydrog Energy 30:1297CrossRef
61.
go back to reference Wu M, Shaw LL (2005) A novel concept of carbon-filled polymer blends for applications in PEM fuel cell bipolar plates. Int J Hydrog Energy 30:373CrossRef Wu M, Shaw LL (2005) A novel concept of carbon-filled polymer blends for applications in PEM fuel cell bipolar plates. Int J Hydrog Energy 30:373CrossRef
62.
go back to reference Kim YS, Wright JB, Grunlan JC (2008) Influence of polymer modulus on the percolation threshold of latex-based composites. Polymer 49:570CrossRef Kim YS, Wright JB, Grunlan JC (2008) Influence of polymer modulus on the percolation threshold of latex-based composites. Polymer 49:570CrossRef
63.
go back to reference Hermant MC, Smeets N, van Hal RC, Meuldijk J, Heuts H, Klumperman B, Herk AMV, Koning CE (2009) Influence of the molecular weight distribution on the percolation threshold of carbon nanotube–polystyrene composites. e-Polymers 9:248CrossRef Hermant MC, Smeets N, van Hal RC, Meuldijk J, Heuts H, Klumperman B, Herk AMV, Koning CE (2009) Influence of the molecular weight distribution on the percolation threshold of carbon nanotube–polystyrene composites. e-Polymers 9:248CrossRef
64.
go back to reference Feng J, Chan C-M (2000) Double positive temperature coefficient effects of carbon black-filled polymer blends containing two semicrystalline polymers. Polymer 41:4559CrossRef Feng J, Chan C-M (2000) Double positive temperature coefficient effects of carbon black-filled polymer blends containing two semicrystalline polymers. Polymer 41:4559CrossRef
65.
go back to reference Jurewicz I, Worajittiphon P, King AA, Sellin PJ, Keddie JL, Dalton AB (2011) Locking carbon nanotubes in confined lattice geometries: a route to low percolation in conducting composites. J Phys Chem B 115:6395CrossRef Jurewicz I, Worajittiphon P, King AA, Sellin PJ, Keddie JL, Dalton AB (2011) Locking carbon nanotubes in confined lattice geometries: a route to low percolation in conducting composites. J Phys Chem B 115:6395CrossRef
66.
go back to reference Kumar S, Doshi H, Srinivasarao M, Park JO, Schiraldi DA (2002) Fibers from polypropylene/nano carbon fiber composites. Polymer 43:1701CrossRef Kumar S, Doshi H, Srinivasarao M, Park JO, Schiraldi DA (2002) Fibers from polypropylene/nano carbon fiber composites. Polymer 43:1701CrossRef
67.
go back to reference Haggenmueller R, Gommans H, Rinzler A, Fischer JE, Winey K (2000) Aligned single-wall carbon nanotubes in composites by melt processing methods. Chem Phys Lett 330:219CrossRef Haggenmueller R, Gommans H, Rinzler A, Fischer JE, Winey K (2000) Aligned single-wall carbon nanotubes in composites by melt processing methods. Chem Phys Lett 330:219CrossRef
68.
go back to reference Li S-N, Li B, Li Z-M, Fu Q, Shen K-Z (2006) Morphological manipulation of carbon nanotube/polycarbonate/polyethylene composites by dynamic injection packing molding. Polymer 47:4497CrossRef Li S-N, Li B, Li Z-M, Fu Q, Shen K-Z (2006) Morphological manipulation of carbon nanotube/polycarbonate/polyethylene composites by dynamic injection packing molding. Polymer 47:4497CrossRef
69.
go back to reference Andrews R, Jacques D, Minot M, Rantell T (2002) Fabrication of carbon multiwall nanotube/polymer composites by shear mixing. Macromol Mater Eng 287:395CrossRef Andrews R, Jacques D, Minot M, Rantell T (2002) Fabrication of carbon multiwall nanotube/polymer composites by shear mixing. Macromol Mater Eng 287:395CrossRef
70.
go back to reference Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35:357CrossRef Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35:357CrossRef
71.
go back to reference Deng H, Zhang R, Bilotti E, Loos J, Peijs T (2009) Conductive polymer tape containing highly oriented carbon nanofillers. J Appl Polym Sci 113:742CrossRef Deng H, Zhang R, Bilotti E, Loos J, Peijs T (2009) Conductive polymer tape containing highly oriented carbon nanofillers. J Appl Polym Sci 113:742CrossRef
72.
go back to reference Deng H, Bilotti E, Zhang R, Peijs T (2010) Effective reinforcement of carbon nanotubes in polypropylene matrices. J Appl Polym Sci 118:30CrossRef Deng H, Bilotti E, Zhang R, Peijs T (2010) Effective reinforcement of carbon nanotubes in polypropylene matrices. J Appl Polym Sci 118:30CrossRef
73.
go back to reference Gorrasi G, Bredeau S, Di Candia C, Patimo G, De Pasquale S, Dubois P (2011) Electroconductive polyamide 6/MWNT nanocomposites: effect of nanotube surface-coating by in situ catalyzed polymerization. Macromol Mater Eng 296:408CrossRef Gorrasi G, Bredeau S, Di Candia C, Patimo G, De Pasquale S, Dubois P (2011) Electroconductive polyamide 6/MWNT nanocomposites: effect of nanotube surface-coating by in situ catalyzed polymerization. Macromol Mater Eng 296:408CrossRef
74.
go back to reference Ezat GS, Kelly AL, Mitchell SC, Youseffi M, Coates PD (2012) Effect of maleic anhydride grafted polypropylene compatibilizer on the morphology and properties of polypropylene/multiwalled carbon nanotube composite. Polym Compos 33:1376CrossRef Ezat GS, Kelly AL, Mitchell SC, Youseffi M, Coates PD (2012) Effect of maleic anhydride grafted polypropylene compatibilizer on the morphology and properties of polypropylene/multiwalled carbon nanotube composite. Polym Compos 33:1376CrossRef
75.
go back to reference Cheng HKF, Pan Y, Sahoo NG, Chong K, Li L, Hwa Chan S, Zhao J (2012) Improvement in properties of multiwalled carbon nanotube/polypropylene nanocomposites through homogeneous dispersion with the aid of surfactants. J Appl Polym Sci 124:1117CrossRef Cheng HKF, Pan Y, Sahoo NG, Chong K, Li L, Hwa Chan S, Zhao J (2012) Improvement in properties of multiwalled carbon nanotube/polypropylene nanocomposites through homogeneous dispersion with the aid of surfactants. J Appl Polym Sci 124:1117CrossRef
76.
go back to reference Khare RA, Bhattacharyya AR, Kulkarni AR (2011) Melt-mixed polypropylene/acrylonitrile-butadiene-styrene blends with multiwall carbon nanotubes: effect of compatibilizer and modifier on morphology and electrical conductivity. J Appl Polym Sci 120:2663CrossRef Khare RA, Bhattacharyya AR, Kulkarni AR (2011) Melt-mixed polypropylene/acrylonitrile-butadiene-styrene blends with multiwall carbon nanotubes: effect of compatibilizer and modifier on morphology and electrical conductivity. J Appl Polym Sci 120:2663CrossRef
77.
go back to reference Tang C, Zhou T, Yang J, Zhang Q, Chen F, Fu Q, Yang L (2011) Wet-grinding assisted ultrasonic dispersion of pristine multi-walled carbon nanotubes (MWCNTs) in chitosan solution. Colloids Surf B 86:189CrossRef Tang C, Zhou T, Yang J, Zhang Q, Chen F, Fu Q, Yang L (2011) Wet-grinding assisted ultrasonic dispersion of pristine multi-walled carbon nanotubes (MWCNTs) in chitosan solution. Colloids Surf B 86:189CrossRef
78.
go back to reference Islam MF, Rojas E, Bergey DM, Johnson AT, Yodh AG (2003) High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Lett 3:269CrossRef Islam MF, Rojas E, Bergey DM, Johnson AT, Yodh AG (2003) High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Lett 3:269CrossRef
79.
go back to reference Regev O, ElKati PN, Loos J, Koning CE (2004) Preparation of conductive nanotube-polymer composites using latex technology. Adv Mater 16:248CrossRef Regev O, ElKati PN, Loos J, Koning CE (2004) Preparation of conductive nanotube-polymer composites using latex technology. Adv Mater 16:248CrossRef
80.
go back to reference Zhang W, Suhr J, Koratkar NA (2006) Observation of high buckling stability in carbon nanotube polymer composites. Adv Mater 18:452CrossRef Zhang W, Suhr J, Koratkar NA (2006) Observation of high buckling stability in carbon nanotube polymer composites. Adv Mater 18:452CrossRef
81.
go back to reference Coleman JN, Khan U, Gun’ko YK (2006) Mechanical reinforcement of polymers using carbon nanotubes. Adv Mater 18:689CrossRef Coleman JN, Khan U, Gun’ko YK (2006) Mechanical reinforcement of polymers using carbon nanotubes. Adv Mater 18:689CrossRef
82.
go back to reference Jia Z, Wang Z, Xu C, Liang J, Wei B, Wu D, Zhu S (1999) Study on poly (methyl methacrylate)/carbon nanotube composites. Mater Sci Eng, A 271:395CrossRef Jia Z, Wang Z, Xu C, Liang J, Wei B, Wu D, Zhu S (1999) Study on poly (methyl methacrylate)/carbon nanotube composites. Mater Sci Eng, A 271:395CrossRef
83.
go back to reference Gao J, Itkis ME, Yu A, Bekyarova E, Zhao B, Haddon RC (2005) Continuous spinning of a single-walled carbon nanotube-nylon composite fiber. J Am Chem Soc 127:3847CrossRef Gao J, Itkis ME, Yu A, Bekyarova E, Zhao B, Haddon RC (2005) Continuous spinning of a single-walled carbon nanotube-nylon composite fiber. J Am Chem Soc 127:3847CrossRef
84.
go back to reference Martin C, Sandler J, Windle A, Schwarz M-K, Bauhofer W, Schulte K, Shaffer M (2005) Electric field-induced aligned multi-wall carbon nanotube networks in epoxy composites. Polymer 46:877CrossRef Martin C, Sandler J, Windle A, Schwarz M-K, Bauhofer W, Schulte K, Shaffer M (2005) Electric field-induced aligned multi-wall carbon nanotube networks in epoxy composites. Polymer 46:877CrossRef
85.
go back to reference Liu K, Chen L, Chen Y, Wu J, Zhang W, Chen F, Fu Q (2011) Preparation of polyester/reduced graphene oxide composites via in situ melt polycondensation and simultaneous thermo-reduction of graphene oxide. J Mater Chem 21:8612CrossRef Liu K, Chen L, Chen Y, Wu J, Zhang W, Chen F, Fu Q (2011) Preparation of polyester/reduced graphene oxide composites via in situ melt polycondensation and simultaneous thermo-reduction of graphene oxide. J Mater Chem 21:8612CrossRef
86.
go back to reference Baudouin A-C, Devaux J, Bailly C (2010) Localization of carbon nanotubes at the interface in blends of polyamide and ethylene–acrylate copolymer. Polymer 51:1341CrossRef Baudouin A-C, Devaux J, Bailly C (2010) Localization of carbon nanotubes at the interface in blends of polyamide and ethylene–acrylate copolymer. Polymer 51:1341CrossRef
87.
go back to reference Baudouin A-C, Auhl D, Tao F, Devaux J, Bailly C (2011) Polymer blend emulsion stabilization using carbon nanotubes interfacial confinement. Polymer 52:149CrossRef Baudouin A-C, Auhl D, Tao F, Devaux J, Bailly C (2011) Polymer blend emulsion stabilization using carbon nanotubes interfacial confinement. Polymer 52:149CrossRef
88.
go back to reference Baudouin A-C, Bailly C, Devaux J (2010) Interface localization of carbon nanotubes in blends of two copolymers. Polym Degrad Stab 95:389CrossRef Baudouin A-C, Bailly C, Devaux J (2010) Interface localization of carbon nanotubes in blends of two copolymers. Polym Degrad Stab 95:389CrossRef
89.
go back to reference Gültner M, Göldel A, Pötschke P (2011) Tuning the localization of functionalized MWCNTs in SAN/PC blends by a reactive component. Compos Sci Technol 72:41CrossRef Gültner M, Göldel A, Pötschke P (2011) Tuning the localization of functionalized MWCNTs in SAN/PC blends by a reactive component. Compos Sci Technol 72:41CrossRef
90.
go back to reference Göldel A, Kasaliwal G, Pötschke P (2009) Selective localization and migration of multiwalled carbon nanotubes in blends of polycarbonate and poly (styrene-acrylonitrile). Macromol Rapid Commun 30:423CrossRef Göldel A, Kasaliwal G, Pötschke P (2009) Selective localization and migration of multiwalled carbon nanotubes in blends of polycarbonate and poly (styrene-acrylonitrile). Macromol Rapid Commun 30:423CrossRef
91.
go back to reference Zhang L, Wan C, Zhang Y (2009) Morphology and electrical properties of polyamide 6/polypropylene/multi-walled carbon nanotubes composites. Compos Sci Technol 69:2212CrossRef Zhang L, Wan C, Zhang Y (2009) Morphology and electrical properties of polyamide 6/polypropylene/multi-walled carbon nanotubes composites. Compos Sci Technol 69:2212CrossRef
92.
go back to reference Li C, Zhao Q, Deng H, Chen C, Wang K, Zhang Q, Chen F, Fu Q (2011) Preparation, structure and properties of thermoplastic olefin nanocomposites containing functionalized carbon nanotubes. Polym Int 60:1629CrossRef Li C, Zhao Q, Deng H, Chen C, Wang K, Zhang Q, Chen F, Fu Q (2011) Preparation, structure and properties of thermoplastic olefin nanocomposites containing functionalized carbon nanotubes. Polym Int 60:1629CrossRef
93.
go back to reference Dai K, Xu X-B, Li Z-M (2007) Electrically conductive carbon black (CB) filled in situ microfibrillar poly (ethylene terephthalate)(PET)/polyethylene (PE) composite with a selective CB distribution. Polymer 48:849CrossRef Dai K, Xu X-B, Li Z-M (2007) Electrically conductive carbon black (CB) filled in situ microfibrillar poly (ethylene terephthalate)(PET)/polyethylene (PE) composite with a selective CB distribution. Polymer 48:849CrossRef
94.
go back to reference Göldel A, Marmur A, Kasaliwal GR, Pötschke P, Heinrich G (2011) Shape-dependent localization of carbon nanotubes and carbon black in an immiscible polymer blend during melt mixing. Macromolecules 44:6094CrossRef Göldel A, Marmur A, Kasaliwal GR, Pötschke P, Heinrich G (2011) Shape-dependent localization of carbon nanotubes and carbon black in an immiscible polymer blend during melt mixing. Macromolecules 44:6094CrossRef
95.
go back to reference Chen J, Shi Y-y, Yang J-h, Zhang N, Huang T, Chen C, Wang Y, Zhou Z-w (2012) A simple strategy to achieve very low percolation threshold via the selective distribution of carbon nanotubes at the interface of polymer blends. J Mater Chem 22:22398CrossRef Chen J, Shi Y-y, Yang J-h, Zhang N, Huang T, Chen C, Wang Y, Zhou Z-w (2012) A simple strategy to achieve very low percolation threshold via the selective distribution of carbon nanotubes at the interface of polymer blends. J Mater Chem 22:22398CrossRef
96.
go back to reference Alig I, Pötschke P, Lellinger D, Skipa T, Pegel S, Kasaliwal GR, Villmow T (2012) Establishment, morphology and properties of carbon nanotube networks in polymer melts. Polymer 53:4CrossRef Alig I, Pötschke P, Lellinger D, Skipa T, Pegel S, Kasaliwal GR, Villmow T (2012) Establishment, morphology and properties of carbon nanotube networks in polymer melts. Polymer 53:4CrossRef
97.
go back to reference Jiang F, Zhang L, Jiang Y, Lu Y, Wang W (2012) Effect of annealing treatment on the structure and properties of polyurethane/multiwalled carbon nanotube nanocomposites. J Appl Polym Sci 126:845CrossRef Jiang F, Zhang L, Jiang Y, Lu Y, Wang W (2012) Effect of annealing treatment on the structure and properties of polyurethane/multiwalled carbon nanotube nanocomposites. J Appl Polym Sci 126:845CrossRef
98.
go back to reference Pan Y, Cheng HKF, Li L, Chan SH, Zhao J, Juay YK (2010) Annealing induced electrical conductivity jump of multi-walled carbon nanotube/polypropylene composites and influence of molecular weight of polypropylene. J Polym Sci, Part B: Polym Phys 48:2238CrossRef Pan Y, Cheng HKF, Li L, Chan SH, Zhao J, Juay YK (2010) Annealing induced electrical conductivity jump of multi-walled carbon nanotube/polypropylene composites and influence of molecular weight of polypropylene. J Polym Sci, Part B: Polym Phys 48:2238CrossRef
99.
go back to reference Zhang Y-C, Pang H, Dai K, Huang Y-F, Ren P-G, Chen C, Li Z-M (2012) Conductive network formation during annealing of an oriented polyethylene-based composite. J Mater Sci 47:3713CrossRef Zhang Y-C, Pang H, Dai K, Huang Y-F, Ren P-G, Chen C, Li Z-M (2012) Conductive network formation during annealing of an oriented polyethylene-based composite. J Mater Sci 47:3713CrossRef
100.
go back to reference Cao Q, Song Y, Tan Y, Zheng Q (2009) Thermal-induced percolation in high-density polyethylene/carbon black composites. Polymer 50:6350CrossRef Cao Q, Song Y, Tan Y, Zheng Q (2009) Thermal-induced percolation in high-density polyethylene/carbon black composites. Polymer 50:6350CrossRef
101.
go back to reference Zhang C, Zhu J, Ouyang M, Ma C-a (2009) Electric field controlled formation and dissociation of multiwalled carbon nanotube conductive pathways in a polymer melt. Appl Phys Lett 94:111915CrossRef Zhang C, Zhu J, Ouyang M, Ma C-a (2009) Electric field controlled formation and dissociation of multiwalled carbon nanotube conductive pathways in a polymer melt. Appl Phys Lett 94:111915CrossRef
102.
go back to reference Cao Q, Song Y, Tan Y, Zheng Q (2010) Conductive and viscoelastic behaviors of carbon black filled polystyrene during annealing. Carbon 48:4268CrossRef Cao Q, Song Y, Tan Y, Zheng Q (2010) Conductive and viscoelastic behaviors of carbon black filled polystyrene during annealing. Carbon 48:4268CrossRef
103.
go back to reference Zhang C, Wang L, Wang J, Ma C-a (2008) Self-assembly and conductive network formation of vapor-grown carbon fiber in a poly (vinylidene fluoride) melt. Carbon 46:2053CrossRef Zhang C, Wang L, Wang J, Ma C-a (2008) Self-assembly and conductive network formation of vapor-grown carbon fiber in a poly (vinylidene fluoride) melt. Carbon 46:2053CrossRef
104.
go back to reference Bilotti E, Zhang R, Deng H, Baxendale M, Peijs T (2010) Fabrication and property prediction of conductive and strain sensing TPU/CNT nanocomposite fibres. J Mater Chem 20:9449CrossRef Bilotti E, Zhang R, Deng H, Baxendale M, Peijs T (2010) Fabrication and property prediction of conductive and strain sensing TPU/CNT nanocomposite fibres. J Mater Chem 20:9449CrossRef
105.
go back to reference Eken A, Tozzi E, Klingenberg D, Bauhofer W (2011) A simulation study on the effects of shear flow on the microstructure and electrical properties of carbon nanotube/polymer composites. Polymer 52:5178CrossRef Eken A, Tozzi E, Klingenberg D, Bauhofer W (2011) A simulation study on the effects of shear flow on the microstructure and electrical properties of carbon nanotube/polymer composites. Polymer 52:5178CrossRef
106.
go back to reference Etika KC, Liu L, Hess LA, Grunlan JC (2009) The influence of synergistic stabilization of carbon black and clay on the electrical and mechanical properties of epoxy composites. Carbon 47:3128CrossRef Etika KC, Liu L, Hess LA, Grunlan JC (2009) The influence of synergistic stabilization of carbon black and clay on the electrical and mechanical properties of epoxy composites. Carbon 47:3128CrossRef
107.
go back to reference Hermant M-C, van der Schoot P, Klumperman B, Koning CE (2010) Probing the cooperative nature of the conductive components in polystyrene/poly (3, 4-ethylenedioxythiophene): poly (styrene sulfonate): single-walled carbon nanotube composites. ACS Nano 4:2242CrossRef Hermant M-C, van der Schoot P, Klumperman B, Koning CE (2010) Probing the cooperative nature of the conductive components in polystyrene/poly (3, 4-ethylenedioxythiophene): poly (styrene sulfonate): single-walled carbon nanotube composites. ACS Nano 4:2242CrossRef
108.
go back to reference Liu L, Grunlan JC (2007) Clay assisted dispersion of carbon nanotubes in conductive epoxy nanocomposites. Adv Funct Mater 17:2343CrossRef Liu L, Grunlan JC (2007) Clay assisted dispersion of carbon nanotubes in conductive epoxy nanocomposites. Adv Funct Mater 17:2343CrossRef
109.
go back to reference Sun Y, Bao H-D, Guo Z-X, Yu J (2008) Modeling of the electrical percolation of mixed carbon fillers in polymer-based composites. Macromolecules 42:459CrossRef Sun Y, Bao H-D, Guo Z-X, Yu J (2008) Modeling of the electrical percolation of mixed carbon fillers in polymer-based composites. Macromolecules 42:459CrossRef
110.
go back to reference Yu K, Zhang Z, Liu Y, Leng J (2011) Carbon nanotube chains in a shape memory polymer/carbon black composite: to significantly reduce the electrical resistivity. Appl Phys Lett 98:074102CrossRef Yu K, Zhang Z, Liu Y, Leng J (2011) Carbon nanotube chains in a shape memory polymer/carbon black composite: to significantly reduce the electrical resistivity. Appl Phys Lett 98:074102CrossRef
111.
go back to reference Otten RH, van der Schoot P (2009) Continuum percolation of polydisperse nanofillers. Phys Rev Lett 103:225704CrossRef Otten RH, van der Schoot P (2009) Continuum percolation of polydisperse nanofillers. Phys Rev Lett 103:225704CrossRef
112.
go back to reference Sumfleth J, Adroher XC, Schulte K (2009) Synergistic effects in network formation and electrical properties of hybrid epoxy nanocomposites containing multi-wall carbon nanotubes and carbon black. J Mater Sci 44:3241CrossRef Sumfleth J, Adroher XC, Schulte K (2009) Synergistic effects in network formation and electrical properties of hybrid epoxy nanocomposites containing multi-wall carbon nanotubes and carbon black. J Mater Sci 44:3241CrossRef
113.
go back to reference Tang C, Long G, Hu X, K-w Wong, W-m Lau, Fan M, Mei J, Xu T, Wang B, Hui D (2014) Conductive polymer nanocomposites with hierarchical multi-scale structures via self-assembly of carbon-nanotubes on graphene on polymer-microspheres. Nanoscale 6:7877CrossRef Tang C, Long G, Hu X, K-w Wong, W-m Lau, Fan M, Mei J, Xu T, Wang B, Hui D (2014) Conductive polymer nanocomposites with hierarchical multi-scale structures via self-assembly of carbon-nanotubes on graphene on polymer-microspheres. Nanoscale 6:7877CrossRef
114.
go back to reference Jiang H, Moon K-s, Li Y, Wong CP (2006) Surface functionalized silver nanoparticles for ultrahigh conductive polymer composites. Chem Mater 18:2969CrossRef Jiang H, Moon K-s, Li Y, Wong CP (2006) Surface functionalized silver nanoparticles for ultrahigh conductive polymer composites. Chem Mater 18:2969CrossRef
115.
go back to reference Bilotti E, Zhang H, Deng H, Zhang R, Fu Q, Peijs T (2013) Controlling the dynamic percolation of carbon nanotube based conductive polymer composites by addition of secondary nanofillers: the effect on electrical conductivity and tuneable sensing behaviour. Compos Sci Technol 74:85CrossRef Bilotti E, Zhang H, Deng H, Zhang R, Fu Q, Peijs T (2013) Controlling the dynamic percolation of carbon nanotube based conductive polymer composites by addition of secondary nanofillers: the effect on electrical conductivity and tuneable sensing behaviour. Compos Sci Technol 74:85CrossRef
116.
go back to reference Nam S, Cho HW, Lim S, Kim D, Kim H, Sung BJ (2013) Enhancement of electrical and thermomechanical properties of silver nanowire composites by the introduction of nonconductive nanoparticles: experiment and simulation. ACS Nano 7:851CrossRef Nam S, Cho HW, Lim S, Kim D, Kim H, Sung BJ (2013) Enhancement of electrical and thermomechanical properties of silver nanowire composites by the introduction of nonconductive nanoparticles: experiment and simulation. ACS Nano 7:851CrossRef
117.
go back to reference Pang H, Chen C, Zhang Y-C, Ren P-G, Yan D-X, Li Z-M (2011) The effect of electric field, annealing temperature and filler loading on the percolation threshold of polystyrene containing carbon nanotubes and graphene nanosheets. Carbon 49:1980CrossRef Pang H, Chen C, Zhang Y-C, Ren P-G, Yan D-X, Li Z-M (2011) The effect of electric field, annealing temperature and filler loading on the percolation threshold of polystyrene containing carbon nanotubes and graphene nanosheets. Carbon 49:1980CrossRef
118.
go back to reference Ma C, Zhang W, Zhu Y, Ji L, Zhang R, Koratkar N, Liang J (2008) Alignment and dispersion of functionalized carbon nanotubes in polymer composites induced by an electric field. Carbon 46:706CrossRef Ma C, Zhang W, Zhu Y, Ji L, Zhang R, Koratkar N, Liang J (2008) Alignment and dispersion of functionalized carbon nanotubes in polymer composites induced by an electric field. Carbon 46:706CrossRef
119.
go back to reference Knaapila M, Rømoen OT, Svåsand E, Pinheiro JP, Martinsen ØG, Buchanan M, Skjeltorp AT, Helgesen G (2011) Conductivity enhancement in carbon nanocone adhesive by electric field induced formation of aligned assemblies. ACS Appl Mater Interfaces 3:378CrossRef Knaapila M, Rømoen OT, Svåsand E, Pinheiro JP, Martinsen ØG, Buchanan M, Skjeltorp AT, Helgesen G (2011) Conductivity enhancement in carbon nanocone adhesive by electric field induced formation of aligned assemblies. ACS Appl Mater Interfaces 3:378CrossRef
120.
go back to reference Chen Z, Ren W, Gao L, Liu B, Pei S, Cheng H-M (2011) Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater 10:424CrossRef Chen Z, Ren W, Gao L, Liu B, Pei S, Cheng H-M (2011) Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater 10:424CrossRef
121.
go back to reference Chen M, Tao T, Zhang L, Gao W, Li C (2013) Highly conductive and stretchable polymer composites based on graphene/MWCNT network. Chem Commun 49:1612CrossRef Chen M, Tao T, Zhang L, Gao W, Li C (2013) Highly conductive and stretchable polymer composites based on graphene/MWCNT network. Chem Commun 49:1612CrossRef
122.
go back to reference Zhang YC, Dai K, Pang H, Luo QJ, Li ZM, Zhang WQ (2012) Temperature and time dependence of electrical resistivity in an anisotropically conductive polymer composite with in situ conductive microfibrils. J Appl Polym Sci 124:1808CrossRef Zhang YC, Dai K, Pang H, Luo QJ, Li ZM, Zhang WQ (2012) Temperature and time dependence of electrical resistivity in an anisotropically conductive polymer composite with in situ conductive microfibrils. J Appl Polym Sci 124:1808CrossRef
123.
go back to reference Rybak A, Boiteux G, Melis F, Seytre G (2010) Conductive polymer composites based on metallic nanofiller as smart materials for current limiting devices. Compos Sci Technol 70:410CrossRef Rybak A, Boiteux G, Melis F, Seytre G (2010) Conductive polymer composites based on metallic nanofiller as smart materials for current limiting devices. Compos Sci Technol 70:410CrossRef
124.
go back to reference Bautista-Quijano J, Aviles F, Aguilar J, Tapia A (2010) Strain sensing capabilities of a piezoresistive MWCNT-polysulfone film. Sens Actuators, A 159:135CrossRef Bautista-Quijano J, Aviles F, Aguilar J, Tapia A (2010) Strain sensing capabilities of a piezoresistive MWCNT-polysulfone film. Sens Actuators, A 159:135CrossRef
125.
go back to reference Dang Z-M, Jiang M-J, Xie D, Yao S-H, Zhang L-Q, Bai J (2008) Supersensitive linear piezoresistive property in carbon nanotubes∕silicone rubber nanocomposites. J Appl Phys 104:024114CrossRef Dang Z-M, Jiang M-J, Xie D, Yao S-H, Zhang L-Q, Bai J (2008) Supersensitive linear piezoresistive property in carbon nanotubes∕silicone rubber nanocomposites. J Appl Phys 104:024114CrossRef
126.
go back to reference Zhang R, Baxendale M, Peijs T (2007) Universal resistivity–strain dependence of carbon nanotube/polymer composites. Phys Rev B 76:195433CrossRef Zhang R, Baxendale M, Peijs T (2007) Universal resistivity–strain dependence of carbon nanotube/polymer composites. Phys Rev B 76:195433CrossRef
127.
go back to reference Kollosche M, Stoyanov H, Laflamme S, Kofod G (2011) Strongly enhanced sensitivity in elastic capacitive strain sensors. J Mater Chem 21:8292CrossRef Kollosche M, Stoyanov H, Laflamme S, Kofod G (2011) Strongly enhanced sensitivity in elastic capacitive strain sensors. J Mater Chem 21:8292CrossRef
128.
go back to reference Castro M, Kumar B, Feller J-F, Haddi Z, Amari A, Bouchikhi B (2011) Novel e-nose for the discrimination of volatile organic biomarkers with an array of carbon nanotubes (CNT) conductive polymer nanocomposites (CPC) sensors. Sens and Actuators B: Chem 159:213CrossRef Castro M, Kumar B, Feller J-F, Haddi Z, Amari A, Bouchikhi B (2011) Novel e-nose for the discrimination of volatile organic biomarkers with an array of carbon nanotubes (CNT) conductive polymer nanocomposites (CPC) sensors. Sens and Actuators B: Chem 159:213CrossRef
129.
go back to reference Cheng J, Wang L, Huo J, Yu H (2011) A novel polycaprolactone-grafted-carbon black nanocomposite-based sensor for detecting solvent vapors. J Appl Polym Sci 121:3277CrossRef Cheng J, Wang L, Huo J, Yu H (2011) A novel polycaprolactone-grafted-carbon black nanocomposite-based sensor for detecting solvent vapors. J Appl Polym Sci 121:3277CrossRef
130.
go back to reference Graham A, Laughlin P, Bloor D (2013) Metal–polymer composite sensors for volatile organic compounds: Part 2. Stand alone chemi-resistors. Sens Actuators B: Chem 177:507CrossRef Graham A, Laughlin P, Bloor D (2013) Metal–polymer composite sensors for volatile organic compounds: Part 2. Stand alone chemi-resistors. Sens Actuators B: Chem 177:507CrossRef
131.
go back to reference Dong XM, Luo Y, Xie LN, Fu RW, Zhang MQ (2008) Conductive carbon black-filled polymethacrylate composites as gas sensing materials: effect of glass transition temperature. Thin Solid Films 516:7886CrossRef Dong XM, Luo Y, Xie LN, Fu RW, Zhang MQ (2008) Conductive carbon black-filled polymethacrylate composites as gas sensing materials: effect of glass transition temperature. Thin Solid Films 516:7886CrossRef
132.
go back to reference Xu H-P, Dang Z-M, Shi D-H, Bai J-B (2008) Remarkable selective localization of modified nanoscaled carbon black and positive temperature coefficient effect in binary-polymer matrix composites. J Mater Chem 18:2685CrossRef Xu H-P, Dang Z-M, Shi D-H, Bai J-B (2008) Remarkable selective localization of modified nanoscaled carbon black and positive temperature coefficient effect in binary-polymer matrix composites. J Mater Chem 18:2685CrossRef
133.
go back to reference Zha J-W, Li W-K, Liao R-J, Bai J, Dang Z-M (2013) High performance hybrid carbon fillers/binary–polymer nanocomposites with remarkably enhanced positive temperature coefficient effect of resistance. J Mater Chem A 1:843CrossRef Zha J-W, Li W-K, Liao R-J, Bai J, Dang Z-M (2013) High performance hybrid carbon fillers/binary–polymer nanocomposites with remarkably enhanced positive temperature coefficient effect of resistance. J Mater Chem A 1:843CrossRef
134.
go back to reference Xiang ZD, Chen T, Li ZM, Bian XC (2009) Negative temperature coefficient of resistivity in lightweight conductive carbon nanotube/polymer composites. Macromol Mater Eng 294:91CrossRef Xiang ZD, Chen T, Li ZM, Bian XC (2009) Negative temperature coefficient of resistivity in lightweight conductive carbon nanotube/polymer composites. Macromol Mater Eng 294:91CrossRef
135.
go back to reference Kar P, Khatua BB (2011) Highly reversible and repeatable PTCR characteristics of PMMA/Ag-coated glass bead composites based on CTE mismatch phenomena. Polym Eng Sci 51:1780CrossRef Kar P, Khatua BB (2011) Highly reversible and repeatable PTCR characteristics of PMMA/Ag-coated glass bead composites based on CTE mismatch phenomena. Polym Eng Sci 51:1780CrossRef
136.
go back to reference Zhang C, Ma C-A, Wang P, Sumita M (2005) Temperature dependence of electrical resistivity for carbon black filled ultra-high molecular weight polyethylene composites prepared by hot compaction. Carbon 43:2544CrossRef Zhang C, Ma C-A, Wang P, Sumita M (2005) Temperature dependence of electrical resistivity for carbon black filled ultra-high molecular weight polyethylene composites prepared by hot compaction. Carbon 43:2544CrossRef
137.
go back to reference Xi Y, Yamanaka A, Bin Y, Matsuo M (2007) Electrical properties of segregated ultrahigh molecular weight polyethylene/multiwalled carbon nanotube composites. J Appl Polym Sci 105:2868CrossRef Xi Y, Yamanaka A, Bin Y, Matsuo M (2007) Electrical properties of segregated ultrahigh molecular weight polyethylene/multiwalled carbon nanotube composites. J Appl Polym Sci 105:2868CrossRef
138.
go back to reference Lu C, Hu X-n, He Y-x, Huang X, Liu J-c, Zhang Y-q (2012) Triple percolation behavior and positive temperature coefficient effect of conductive polymer composites with especial interface morphology. Polym Bull 68:2071CrossRef Lu C, Hu X-n, He Y-x, Huang X, Liu J-c, Zhang Y-q (2012) Triple percolation behavior and positive temperature coefficient effect of conductive polymer composites with especial interface morphology. Polym Bull 68:2071CrossRef
139.
go back to reference Gao J-F, Li Z-M, Peng S, Yan D-X (2009) Temperature-resistivity behaviour of CNTs/UHMWPE composites with a two-dimensional conductive network. Polym-Plast Technol Eng 48:478CrossRef Gao J-F, Li Z-M, Peng S, Yan D-X (2009) Temperature-resistivity behaviour of CNTs/UHMWPE composites with a two-dimensional conductive network. Polym-Plast Technol Eng 48:478CrossRef
140.
go back to reference Pang H, Zhang Y-C, Chen T, Zeng B-Q, Li Z-M (2010) Tunable positive temperature coefficient of resistivity in an electrically conducting polymer/graphene composite. Appl Phys Lett 96:251907CrossRef Pang H, Zhang Y-C, Chen T, Zeng B-Q, Li Z-M (2010) Tunable positive temperature coefficient of resistivity in an electrically conducting polymer/graphene composite. Appl Phys Lett 96:251907CrossRef
141.
go back to reference Sachdev V, Mehra N, Mehra R (2004) Study of pre-localized graphite/polyvinyl chloride electroconductive composites for sensors. Phys Status Solidi (a) 201:2089CrossRef Sachdev V, Mehra N, Mehra R (2004) Study of pre-localized graphite/polyvinyl chloride electroconductive composites for sensors. Phys Status Solidi (a) 201:2089CrossRef
142.
go back to reference Yamada T, Hayamizu Y, Yamamoto Y, Yomogida Y, Izadi-Najafabadi A, Futaba DN, Hata K (2011) A stretchable carbon nanotube strain sensor for human-motion detection. Nat Nanotechnol 6:296CrossRef Yamada T, Hayamizu Y, Yamamoto Y, Yomogida Y, Izadi-Najafabadi A, Futaba DN, Hata K (2011) A stretchable carbon nanotube strain sensor for human-motion detection. Nat Nanotechnol 6:296CrossRef
143.
go back to reference Knite M, Ozols K, Zavickis J, Tupureina V, Klemenoks I, Orlovs R (2009) Elastomer–carbon nanotube composites as prospective multifunctional sensing materials. J Nanosci Nanotechnol 9:3587CrossRef Knite M, Ozols K, Zavickis J, Tupureina V, Klemenoks I, Orlovs R (2009) Elastomer–carbon nanotube composites as prospective multifunctional sensing materials. J Nanosci Nanotechnol 9:3587CrossRef
144.
go back to reference Hu N, Karube Y, Arai M, Watanabe T, Yan C, Li Y, Liu Y, Fukunaga H (2010) Investigation on sensitivity of a polymer/carbon nanotube composite strain sensor. Carbon 48:680CrossRef Hu N, Karube Y, Arai M, Watanabe T, Yan C, Li Y, Liu Y, Fukunaga H (2010) Investigation on sensitivity of a polymer/carbon nanotube composite strain sensor. Carbon 48:680CrossRef
145.
go back to reference Murugaraj P, Mainwaring D, Khelil NA, Peng JL, Siegele R, Sawant P (2010) The improved electromechanical sensitivity of polymer thin films containing carbon clusters produced in situ by irradiation with metal ions. Carbon 48:4230CrossRef Murugaraj P, Mainwaring D, Khelil NA, Peng JL, Siegele R, Sawant P (2010) The improved electromechanical sensitivity of polymer thin films containing carbon clusters produced in situ by irradiation with metal ions. Carbon 48:4230CrossRef
146.
go back to reference Lin L, Deng H, Gao X, Zhang S, Bilotti E, Peijs T, Fu Q (2013) Modified resistivity–strain behavior through the incorporation of metallic particles in conductive polymer composite fibers containing carbon nanotubes. Polym Int 62:134CrossRef Lin L, Deng H, Gao X, Zhang S, Bilotti E, Peijs T, Fu Q (2013) Modified resistivity–strain behavior through the incorporation of metallic particles in conductive polymer composite fibers containing carbon nanotubes. Polym Int 62:134CrossRef
147.
go back to reference Kumar B, Park Y, Castro M, Grunlan J, Feller J-F (2012) Fine control of carbon nanotubes–polyelectrolyte sensors sensitivity by electrostatic layer by layer assembly (eLbL) for the detection of volatile organic compounds (VOC). Talanta 88:396CrossRef Kumar B, Park Y, Castro M, Grunlan J, Feller J-F (2012) Fine control of carbon nanotubes–polyelectrolyte sensors sensitivity by electrostatic layer by layer assembly (eLbL) for the detection of volatile organic compounds (VOC). Talanta 88:396CrossRef
148.
go back to reference Pötschke P, Kobashi K, Villmow T, Andres T, Paiva MC, Covas JA (2011) Liquid sensing properties of melt processed polypropylene/poly (ε-caprolactone) blends containing multiwalled carbon nanotubes. Compos Sci Technol 71:1451CrossRef Pötschke P, Kobashi K, Villmow T, Andres T, Paiva MC, Covas JA (2011) Liquid sensing properties of melt processed polypropylene/poly (ε-caprolactone) blends containing multiwalled carbon nanotubes. Compos Sci Technol 71:1451CrossRef
149.
go back to reference Shang S, Zeng W, Tao X-M (2012) Investigation on the electrical response behaviors of multiwalled carbon nanotube/polyurethane composite in organic solvent vapors. Sens Actuators B: Chem 166:330CrossRef Shang S, Zeng W, Tao X-M (2012) Investigation on the electrical response behaviors of multiwalled carbon nanotube/polyurethane composite in organic solvent vapors. Sens Actuators B: Chem 166:330CrossRef
150.
go back to reference Villmow T, Pegel S, John A, Rentenberger R, Pötschke P (2011) Liquid sensing: smart polymer/CNT composites. Mater Today 14:340CrossRef Villmow T, Pegel S, John A, Rentenberger R, Pötschke P (2011) Liquid sensing: smart polymer/CNT composites. Mater Today 14:340CrossRef
151.
go back to reference Castro M, Lu J, Bruzaud S, Kumar B, Feller J-F (2009) Carbon nanotubes/poly (ε-caprolactone) composite vapour sensors. Carbon 47:1930CrossRef Castro M, Lu J, Bruzaud S, Kumar B, Feller J-F (2009) Carbon nanotubes/poly (ε-caprolactone) composite vapour sensors. Carbon 47:1930CrossRef
152.
go back to reference Kumar B, Castro M, Feller J-F (2012) Controlled conductive junction gap for chitosan–carbon nanotube quantum resistive vapour sensors. J Mater Chem 22:10656CrossRef Kumar B, Castro M, Feller J-F (2012) Controlled conductive junction gap for chitosan–carbon nanotube quantum resistive vapour sensors. J Mater Chem 22:10656CrossRef
153.
go back to reference Pang H, Bao Y, Xu L, Yan D-X, Zhang W-Q, Wang J-H, Li Z-M (2013) Double-segregated carbon nanotube–polymer conductive composites as candidates for liquid sensing materials. J Mater Chem A 1:4177CrossRef Pang H, Bao Y, Xu L, Yan D-X, Zhang W-Q, Wang J-H, Li Z-M (2013) Double-segregated carbon nanotube–polymer conductive composites as candidates for liquid sensing materials. J Mater Chem A 1:4177CrossRef
154.
go back to reference Lu J, Feller J-F, Kumar B, Castro M, Kim Y, Park Y, Grunlan J (2011) Chemo-sensitivity of latex-based films containing segregated networks of carbon nanotubes. Sens Actuators B: Chem 155:28CrossRef Lu J, Feller J-F, Kumar B, Castro M, Kim Y, Park Y, Grunlan J (2011) Chemo-sensitivity of latex-based films containing segregated networks of carbon nanotubes. Sens Actuators B: Chem 155:28CrossRef
155.
go back to reference Dai K, Zhao S, Zhai W, Zheng G, Liu C, Chen J, Shen C (2013) Tuning of liquid sensing performance of conductive carbon black (CB)/polypropylene (PP) composite utilizing a segregated structure. Compos A Appl Sci Manuf 55:11CrossRef Dai K, Zhao S, Zhai W, Zheng G, Liu C, Chen J, Shen C (2013) Tuning of liquid sensing performance of conductive carbon black (CB)/polypropylene (PP) composite utilizing a segregated structure. Compos A Appl Sci Manuf 55:11CrossRef
156.
go back to reference Pang H, Piao Y-Y, Xu L, Bao Y, Cui C-H, Fu Q, Li Z-M (2013) Tunable liquid sensing performance of conducting carbon nanotube–polyethylene composites with a porous segregated structure. RSC Adv 3:19802CrossRef Pang H, Piao Y-Y, Xu L, Bao Y, Cui C-H, Fu Q, Li Z-M (2013) Tunable liquid sensing performance of conducting carbon nanotube–polyethylene composites with a porous segregated structure. RSC Adv 3:19802CrossRef
157.
go back to reference Nie T, Zhang O, Lu L, Xu J, Wen Y, Qiu X (2013) Facile synthesis of poly (3, 4-ethylenedioxythiophene)/graphene nanocomposite and its application for determination of nitrite. Int J Electrochem Sci 8:8708 Nie T, Zhang O, Lu L, Xu J, Wen Y, Qiu X (2013) Facile synthesis of poly (3, 4-ethylenedioxythiophene)/graphene nanocomposite and its application for determination of nitrite. Int J Electrochem Sci 8:8708
158.
go back to reference Wang Q, Yun Y (2012) A nanomaterial composed of cobalt nanoparticles, poly (3, 4-ethylenedioxythiophene) and graphene with high electrocatalytic activity for nitrite oxidation. Microchim Acta 177:411CrossRef Wang Q, Yun Y (2012) A nanomaterial composed of cobalt nanoparticles, poly (3, 4-ethylenedioxythiophene) and graphene with high electrocatalytic activity for nitrite oxidation. Microchim Acta 177:411CrossRef
159.
go back to reference Ye D, Luo L, Ding Y, Chen Q, Liu X (2011) A novel nitrite sensor based on graphene/polypyrrole/chitosan nanocomposite modified glassy carbon electrode. Analyst 136:4563CrossRef Ye D, Luo L, Ding Y, Chen Q, Liu X (2011) A novel nitrite sensor based on graphene/polypyrrole/chitosan nanocomposite modified glassy carbon electrode. Analyst 136:4563CrossRef
160.
go back to reference Liu S, Tian J, Wang L, Luo Y, Sun X (2011) Production of stable aqueous dispersion of poly (3, 4-ethylenedioxythiophene) nanorods using graphene oxide as a stabilizing agent and their application for nitrite detection. Analyst 136:4898CrossRef Liu S, Tian J, Wang L, Luo Y, Sun X (2011) Production of stable aqueous dispersion of poly (3, 4-ethylenedioxythiophene) nanorods using graphene oxide as a stabilizing agent and their application for nitrite detection. Analyst 136:4898CrossRef
161.
go back to reference Rogers JA, Someya T, Huang Y (2010) Materials and mechanics for stretchable electronics. Science 327:1603CrossRef Rogers JA, Someya T, Huang Y (2010) Materials and mechanics for stretchable electronics. Science 327:1603CrossRef
162.
go back to reference Sekitani T, Noguchi Y, Hata K, Fukushima T, Aida T, Someya T (2008) A rubberlike stretchable active matrix using elastic conductors. Science 321:1468CrossRef Sekitani T, Noguchi Y, Hata K, Fukushima T, Aida T, Someya T (2008) A rubberlike stretchable active matrix using elastic conductors. Science 321:1468CrossRef
163.
go back to reference Zhu Y, Xu F (2012) Buckling of aligned carbon nanotubes as stretchable conductors: a new manufacturing strategy. Adv Mater 24:1073CrossRef Zhu Y, Xu F (2012) Buckling of aligned carbon nanotubes as stretchable conductors: a new manufacturing strategy. Adv Mater 24:1073CrossRef
164.
go back to reference Sokolov AN, Tee BC, Bettinger CJ, Tok JB-H, Bao Z (2011) Chemical and engineering approaches to enable organic field-effect transistors for electronic skin applications. Acc Chem Res 45:361CrossRef Sokolov AN, Tee BC, Bettinger CJ, Tok JB-H, Bao Z (2011) Chemical and engineering approaches to enable organic field-effect transistors for electronic skin applications. Acc Chem Res 45:361CrossRef
165.
go back to reference Tee BC, Wang C, Allen R, Bao Z (2012) An electrically and mechanically self-healing composite with pressure-and flexion-sensitive properties for electronic skin applications. Nat Nanotechnol 7:825CrossRef Tee BC, Wang C, Allen R, Bao Z (2012) An electrically and mechanically self-healing composite with pressure-and flexion-sensitive properties for electronic skin applications. Nat Nanotechnol 7:825CrossRef
166.
go back to reference Ahn J-H, Je JH (2012) Stretchable electronics: materials, architectures and integrations. J Phys D Appl Phys 45:103001CrossRef Ahn J-H, Je JH (2012) Stretchable electronics: materials, architectures and integrations. J Phys D Appl Phys 45:103001CrossRef
167.
go back to reference Liang J, Li L, Niu X, Yu Z, Pei Q (2013) Elastomeric polymer light-emitting devices and displays. Nat Photonics 7:817CrossRef Liang J, Li L, Niu X, Yu Z, Pei Q (2013) Elastomeric polymer light-emitting devices and displays. Nat Photonics 7:817CrossRef
168.
go back to reference Kujawski M, Pearse J, Smela E (2010) Elastomers filled with exfoliated graphite as compliant electrodes. Carbon 48:2409CrossRef Kujawski M, Pearse J, Smela E (2010) Elastomers filled with exfoliated graphite as compliant electrodes. Carbon 48:2409CrossRef
169.
go back to reference Shang S, Zeng W, X-m Tao (2011) High stretchable MWNTs/polyurethane conductive nanocomposites. J Mater Chem 21:7274CrossRef Shang S, Zeng W, X-m Tao (2011) High stretchable MWNTs/polyurethane conductive nanocomposites. J Mater Chem 21:7274CrossRef
170.
go back to reference Kim KH, Vural M, Islam MF (2011) Single-walled carbon nanotube aerogel-based elastic conductors. Adv Mater 23:2865CrossRef Kim KH, Vural M, Islam MF (2011) Single-walled carbon nanotube aerogel-based elastic conductors. Adv Mater 23:2865CrossRef
171.
go back to reference Hewitt CA, Kaiser AB, Roth S, Craps M, Czerw R, Carroll DL (2012) Multilayered carbon nanotube/polymer composite based thermoelectric fabrics. Nano Lett 12:1307CrossRef Hewitt CA, Kaiser AB, Roth S, Craps M, Czerw R, Carroll DL (2012) Multilayered carbon nanotube/polymer composite based thermoelectric fabrics. Nano Lett 12:1307CrossRef
172.
go back to reference Du Y, Shen SZ, Cai K, Casey PS (2012) Research progress on polymer–inorganic thermoelectric nanocomposite materials. Prog Polym Sci 37:820CrossRef Du Y, Shen SZ, Cai K, Casey PS (2012) Research progress on polymer–inorganic thermoelectric nanocomposite materials. Prog Polym Sci 37:820CrossRef
173.
go back to reference Yadav GG, Susoreny JA, Zhang G, Yang H, Wu Y (2011) Nanostructure-based thermoelectric conversion: an insight into the feasibility and sustainability for large-scale deployment. Nanoscale 3:3555CrossRef Yadav GG, Susoreny JA, Zhang G, Yang H, Wu Y (2011) Nanostructure-based thermoelectric conversion: an insight into the feasibility and sustainability for large-scale deployment. Nanoscale 3:3555CrossRef
174.
go back to reference Tritt TM (2011) Thermoelectric phenomena, materials, and applications. Annu Rev Mater Res 41:433CrossRef Tritt TM (2011) Thermoelectric phenomena, materials, and applications. Annu Rev Mater Res 41:433CrossRef
175.
go back to reference Pang H, Piao Y-Y, Tan Y-Q, Jiang G-Y, Wang J-H, Li Z-M (2013) Thermoelectric behaviour of segregated conductive polymer composites with hybrid fillers of carbon nanotube and bismuth telluride. Mater Lett 107:150CrossRef Pang H, Piao Y-Y, Tan Y-Q, Jiang G-Y, Wang J-H, Li Z-M (2013) Thermoelectric behaviour of segregated conductive polymer composites with hybrid fillers of carbon nanotube and bismuth telluride. Mater Lett 107:150CrossRef
176.
go back to reference Yu C, Kim YS, Kim D, Grunlan JC (2008) Thermoelectric behavior of segregated-network polymer nanocomposites. Nano Lett 8:4428CrossRef Yu C, Kim YS, Kim D, Grunlan JC (2008) Thermoelectric behavior of segregated-network polymer nanocomposites. Nano Lett 8:4428CrossRef
177.
go back to reference Yu C, Choi K, Yin L, Grunlan JC (2011) Light-weight flexible carbon nanotube based organic composites with large thermoelectric power factors. ACS Nano 5:7885CrossRef Yu C, Choi K, Yin L, Grunlan JC (2011) Light-weight flexible carbon nanotube based organic composites with large thermoelectric power factors. ACS Nano 5:7885CrossRef
178.
go back to reference Kim D, Kim Y, Choi K, Grunlan JC, Yu C (2009) Improved thermoelectric behavior of nanotube-filled polymer composites with poly (3, 4-ethylenedioxythiophene) poly (styrenesulfonate). ACS Nano 4:513CrossRef Kim D, Kim Y, Choi K, Grunlan JC, Yu C (2009) Improved thermoelectric behavior of nanotube-filled polymer composites with poly (3, 4-ethylenedioxythiophene) poly (styrenesulfonate). ACS Nano 4:513CrossRef
179.
go back to reference Srivastava S, Schaefer JL, Yang Z, Tu Z, Archer LA (2014) 25th anniversary article: polymer-particle composites: phase stability and applications in electrochemical energy storage. Adv Mater 26:201CrossRef Srivastava S, Schaefer JL, Yang Z, Tu Z, Archer LA (2014) 25th anniversary article: polymer-particle composites: phase stability and applications in electrochemical energy storage. Adv Mater 26:201CrossRef
180.
go back to reference Nyholm L, Nyström G, Mihranyan A, Strømme M (2011) Toward flexible polymer and paper-based energy storage devices. Adv Mater 23:3751 Nyholm L, Nyström G, Mihranyan A, Strømme M (2011) Toward flexible polymer and paper-based energy storage devices. Adv Mater 23:3751
181.
go back to reference Peng C, Jin J, Chen GZ (2007) A comparative study on electrochemical co-deposition and capacitance of composite films of conducting polymers and carbon nanotubes. Electrochim Acta 53:525CrossRef Peng C, Jin J, Chen GZ (2007) A comparative study on electrochemical co-deposition and capacitance of composite films of conducting polymers and carbon nanotubes. Electrochim Acta 53:525CrossRef
182.
go back to reference Frackowiak E, Jurewicz K, Delpeux S, Bertagna V, Bonnamy S, Béguin F (2002) Synergy of components in supercapacitors based on nanotube/polypyrrole composites. Mol Cryst Liq Cryst 387:73CrossRef Frackowiak E, Jurewicz K, Delpeux S, Bertagna V, Bonnamy S, Béguin F (2002) Synergy of components in supercapacitors based on nanotube/polypyrrole composites. Mol Cryst Liq Cryst 387:73CrossRef
183.
go back to reference An KH, Jeon KK, Heo JK, Lim SC, Bae DJ, Lee YH (2002) High-capacitance supercapacitor using a nanocomposite electrode of single-walled carbon nanotube and polypyrrole. J Electrochem Soc 149:A1058CrossRef An KH, Jeon KK, Heo JK, Lim SC, Bae DJ, Lee YH (2002) High-capacitance supercapacitor using a nanocomposite electrode of single-walled carbon nanotube and polypyrrole. J Electrochem Soc 149:A1058CrossRef
184.
go back to reference Cho S, Kim M, Jang J (2015) Screen-printable and flexible RuO2 nanoparticle-decorated PEDOT:PSS/graphene nanocomposite with enhanced electrical and electrochemical performances for high-capacity supercapacitor. ACS Appl Mater Interfaces 7:10213CrossRef Cho S, Kim M, Jang J (2015) Screen-printable and flexible RuO2 nanoparticle-decorated PEDOT:PSS/graphene nanocomposite with enhanced electrical and electrochemical performances for high-capacity supercapacitor. ACS Appl Mater Interfaces 7:10213CrossRef
185.
go back to reference Lei W, Si W, Xu Y, Gu Z, Hao Q (2014) Conducting polymer composites with graphene for use in chemical sensors and biosensors. Microchim Acta 181:707CrossRef Lei W, Si W, Xu Y, Gu Z, Hao Q (2014) Conducting polymer composites with graphene for use in chemical sensors and biosensors. Microchim Acta 181:707CrossRef
186.
go back to reference Vaitkuviene A, Kaseta V, Voronovic J, Ramanauskaite G, Biziuleviciene G, Ramanaviciene A, Ramanavicius A (2013) Evaluation of cytotoxicity of polypyrrole nanoparticles synthesized by oxidative polymerization. J Hazard Mater 250:167CrossRef Vaitkuviene A, Kaseta V, Voronovic J, Ramanauskaite G, Biziuleviciene G, Ramanaviciene A, Ramanavicius A (2013) Evaluation of cytotoxicity of polypyrrole nanoparticles synthesized by oxidative polymerization. J Hazard Mater 250:167CrossRef
187.
go back to reference Gaharwar AK, Peppas NA, Khademhosseini A (2014) Nanocomposite hydrogels for biomedical applications. Biotechnol Bioeng 111:441CrossRef Gaharwar AK, Peppas NA, Khademhosseini A (2014) Nanocomposite hydrogels for biomedical applications. Biotechnol Bioeng 111:441CrossRef
188.
go back to reference Das TK, Prusty S (2012) Review on conducting polymers and their applications. Polym-Plast Technol Eng 51:1487CrossRef Das TK, Prusty S (2012) Review on conducting polymers and their applications. Polym-Plast Technol Eng 51:1487CrossRef
189.
go back to reference Shin SR, Jung SM, Zalabany M, Kim K, Zorlutuna P, Sb Kim, Nikkhah M, Khabiry M, Azize M, Kong J (2013) Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators. ACS Nano 7:2369CrossRef Shin SR, Jung SM, Zalabany M, Kim K, Zorlutuna P, Sb Kim, Nikkhah M, Khabiry M, Azize M, Kong J (2013) Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators. ACS Nano 7:2369CrossRef
190.
go back to reference Feng XM, Li RM, Ma YW, Chen RF, Shi NE, Fan QL, Huang W (2011) One-step electrochemical synthesis of graphene/polyaniline composite film and its applications. Adv Funct Mater 21:2989CrossRef Feng XM, Li RM, Ma YW, Chen RF, Shi NE, Fan QL, Huang W (2011) One-step electrochemical synthesis of graphene/polyaniline composite film and its applications. Adv Funct Mater 21:2989CrossRef
191.
go back to reference Qiu JD, Shi L, Liang RP, Wang GC, Xia XH (2012) Controllable deposition of a platinum nanoparticle ensemble on a polyaniline/graphene hybrid as a novel electrode material for electrochemical sensing. Chem A Eur J 18:7950CrossRef Qiu JD, Shi L, Liang RP, Wang GC, Xia XH (2012) Controllable deposition of a platinum nanoparticle ensemble on a polyaniline/graphene hybrid as a novel electrode material for electrochemical sensing. Chem A Eur J 18:7950CrossRef
Metadata
Title
Conducting Polymer Nanocomposites: Recent Developments and Future Prospects
Authors
Changyu Tang
Nanxi Chen
Xin Hu
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-46458-9_1

Premium Partners