Skip to main content
Top
Published in: Fire Technology 3/2012

01-07-2012

Conductive and Radiative Heat Transfer in Ceramic and Metal Foams at Fire Temperatures

Contribution to the Special Issue “Materials in Fire” Guest Editor K. Ghazi Wakili

Authors: Rémi Coquard, Denis Rochais, Dominique Baillis

Published in: Fire Technology | Issue 3/2012

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In addition to the multiple actual or possible applications of metal and ceramic foams in various technological fields, their thermal properties make them a good candidate for utilization as fire barriers. Several studies have shown experimentally their exceptional fire retardance due to their low apparent thermal conductivity. However, while the thermal properties of this porous material have been widely studied at ambient temperature and are, at present, well-known, their thermal behaviour at fire temperatures remains relatively unexplored. Indeed, at such temperatures, the major difficulties are not only due to the fact that thermal measurements are rendered fussy since heavy equipments are required but also stem from the fact that a significant part of the heat transfer occurs by thermal radiation which is much more difficult to evaluate than conductive heat transfer. Therefore, the present chapter is written with a view to report progress on the knowledge of heat transfer in open cell foams and to enlighten the reader on the mechanisms of heat transfer at high temperatures. A first part is devoted to the review of the prior published works on the experimental or theoretical characterisations of radiative and conductive heat transfers from ambient to high temperatures. By taking inspiration from the concepts and models presented in these previous works, we propose, in a second part, a model of prediction of the conductive and radiative contributions to heat transfer at fire temperatures. This analytical model is based on numerical simulations applied to real foams and takes into account the structure of the foam and the optical and thermal properties of the constituents. In a third part, we propose an innovative experimental technique of characterization of heat transfer in foams at high temperatures which permit to evaluate independently the radiative and conductive contributions from a unique and simple measurement. The experimental results obtained on several metal and ceramic foams are compared to the results predicted by our numerical model. The good adequacy between experimental and theoretical results show the consistency of both approaches.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Evans, A.G., Hutchinson, J.W. and Ashby, M.F., “Cellular metals”, Current opinion in solid state & materials science 1998, vol. 3, no3, pp. 288-303CrossRef Evans, A.G., Hutchinson, J.W. and Ashby, M.F., “Cellular metals”, Current opinion in solid state & materials science 1998, vol. 3, no3, pp. 288-303CrossRef
2.
go back to reference Ashby, M.F., Evans, A.G., Hutchinson, J.W. and Fleck, N.A., Metal Foams: A Design Guide. Cambridge University, Engineering Department, Cambridge, 1998 Ashby, M.F., Evans, A.G., Hutchinson, J.W. and Fleck, N.A., Metal Foams: A Design Guide. Cambridge University, Engineering Department, Cambridge, 1998
3.
go back to reference Lu, T.J., Hess, A. and Ashby, M.F., “Sound absorption in metallic foams”, J. appl. Phys. 1999, vol. 85, no11, pp. 7528-7539CrossRef Lu, T.J., Hess, A. and Ashby, M.F., “Sound absorption in metallic foams”, J. appl. Phys. 1999, vol. 85, no11, pp. 7528-7539CrossRef
4.
go back to reference Lu, T.J., Stone, H.A. and Ashby, M.F.,”Heat transfer in open-cell foams” Acta mater., 1998, 46, no 10, pp. 3619-3635CrossRef Lu, T.J., Stone, H.A. and Ashby, M.F.,”Heat transfer in open-cell foams” Acta mater., 1998, 46, no 10, pp. 3619-3635CrossRef
5.
go back to reference S. GAUTHIER, A. NICOLLE, D. BAILLIS, “Investigation of the flame structure and nitrogen oxides formation in lean porous premixed combustion of natural gas/hydrogen blends” International Journal of Hydrogen Energy, 33, 2008, pp. 4893-4905CrossRef S. GAUTHIER, A. NICOLLE, D. BAILLIS, “Investigation of the flame structure and nitrogen oxides formation in lean porous premixed combustion of natural gas/hydrogen blends International Journal of Hydrogen Energy, 33, 2008, pp. 4893-4905CrossRef
6.
go back to reference T.J., Lu and, C., Chen (1999) Thermal Transport and fire retardance properties of cellular aluminum alloys. Acta mater 47(5): 1469-1485CrossRef T.J., Lu and, C., Chen (1999) Thermal Transport and fire retardance properties of cellular aluminum alloys. Acta mater 47(5): 1469-1485CrossRef
7.
go back to reference Koch U, Thompson MS, Nardone VC (1994) In: Sanders TH Jr (ed) Proceedings of the 4th international conference on aluminium alloys, Atlanta, Georgia, pp 387–394 Koch U, Thompson MS, Nardone VC (1994) In: Sanders TH Jr (ed) Proceedings of the 4th international conference on aluminium alloys, Atlanta, Georgia, pp 387–394
8.
go back to reference Coquard R, Baillis D (2008) Radiative and conductive thermal properties of foams. In: Öchsner A, Murch GE, de Lemos M (eds) Thermal properties of cellular and porous materials, Weinheim, pp 343–384 Coquard R, Baillis D (2008) Radiative and conductive thermal properties of foams. In: Öchsner A, Murch GE, de Lemos M (eds) Thermal properties of cellular and porous materials, Weinheim, pp 343–384
9.
go back to reference Solórzano E, Reglero JA, Rodríguez-Pérez MA, Lehmhus D, Wichmann M, de Saja JA (2008) An experimental study on the thermal conductivity of aluminium foams by using the transient plane source method. Int J Heat Mass Transf 51:6259–6267CrossRef Solórzano E, Reglero JA, Rodríguez-Pérez MA, Lehmhus D, Wichmann M, de Saja JA (2008) An experimental study on the thermal conductivity of aluminium foams by using the transient plane source method. Int J Heat Mass Transf 51:6259–6267CrossRef
10.
go back to reference Russell HW (1935) Principles of heat flow in porous insulators. J Am Ceram Soc 18:1–5CrossRef Russell HW (1935) Principles of heat flow in porous insulators. J Am Ceram Soc 18:1–5CrossRef
11.
go back to reference Glicksmann L.R and Schuetz M.A.; In: N.C. Hilyard and A. Cunningham, editors, Low Density Cellular Plastics. Chapman et Hall, London 1994, pp. 104-152CrossRef Glicksmann L.R and Schuetz M.A.; In: N.C. Hilyard and A. Cunningham, editors, Low Density Cellular Plastics. Chapman et Hall, London 1994, pp. 104-152CrossRef
12.
go back to reference Collishaw P.G.,. Evans J.R.G, An assessment of expressions for the apparent thermal conductivity of cellular materials. J. Mater. Sci. 1994; 29: 486–498CrossRef Collishaw P.G.,. Evans J.R.G, An assessment of expressions for the apparent thermal conductivity of cellular materials. J. Mater. Sci. 1994; 29: 486–498CrossRef
13.
go back to reference Bauer T.H., A general analytical approach toward the thermal conductivity of porous media. Internat. J. Heat Mass Transfer 1993; 36: 4181–4191MATHCrossRef Bauer T.H., A general analytical approach toward the thermal conductivity of porous media. Internat. J. Heat Mass Transfer 1993; 36: 4181–4191MATHCrossRef
14.
go back to reference Ahern A., Verbist G., Weaire D., Phelan R., and, Fleurent H., The conductivity of foams: a generalisation of the electrical to the thermal case. Colloids and Surfaces A: Physicochem. Eng. Aspects 2005; 263: 275–279CrossRef Ahern A., Verbist G., Weaire D., Phelan R., and, Fleurent H., The conductivity of foams: a generalisation of the electrical to the thermal case. Colloids and Surfaces A: Physicochem. Eng. Aspects 2005; 263: 275–279CrossRef
15.
go back to reference Boomsma K., Poulikakos D., On the effective thermal conductivity of a three dimensionally structured fluid-saturated metal foam. Int J Heat Mass Transf 2001; 44: pp. 827–836MATHCrossRef Boomsma K., Poulikakos D., On the effective thermal conductivity of a three dimensionally structured fluid-saturated metal foam. Int J Heat Mass Transf 2001; 44: pp. 827–836MATHCrossRef
16.
go back to reference Bhattacharya A., Calmidi V.V. and Mahajan R.L., Thermophysical properties of high porosity metal foams. Int J Heat Mass Transf 2002; 45: pp. 1017-1031MATHCrossRef Bhattacharya A., Calmidi V.V. and Mahajan R.L., Thermophysical properties of high porosity metal foams. Int J Heat Mass Transf 2002; 45: pp. 1017-1031MATHCrossRef
17.
go back to reference Fu X., Viskanta R. and Gore J.P., Prediction of effective thermal conductivity of cellular ceramics. Int. Comm. Heat Mass Transfer 1998; 25: pp. 151-160CrossRef Fu X., Viskanta R. and Gore J.P., Prediction of effective thermal conductivity of cellular ceramics. Int. Comm. Heat Mass Transfer 1998; 25: pp. 151-160CrossRef
18.
go back to reference Singh R. and Kasana H.S., Computational aspects of effective thermal conductivity of highly porous metal foams. Applied Thermal Engineering 2004; 24: pp. 1841–1849CrossRef Singh R. and Kasana H.S., Computational aspects of effective thermal conductivity of highly porous metal foams. Applied Thermal Engineering 2004; 24: pp. 1841–1849CrossRef
19.
go back to reference Wang J.F., Carson J.K., J. Willix J., North M.F., Cleland D.J., A symmetric and interconnected skeleton structural (SISS) model for predicting thermal and electrical conductivity and Young’s modulus of porous foams. Acta Materialia 2008; 56: pp. 5138–5146CrossRef Wang J.F., Carson J.K., J. Willix J., North M.F., Cleland D.J., A symmetric and interconnected skeleton structural (SISS) model for predicting thermal and electrical conductivity and Young’s modulus of porous foams. Acta Materialia 2008; 56: pp. 5138–5146CrossRef
20.
go back to reference Druma A.M., Alam M.K. and Druma C., Analysis of thermal conduction in carbon foams. International Journal of Thermal Sciences 2004; 43: pp. 689–695CrossRef Druma A.M., Alam M.K. and Druma C., Analysis of thermal conduction in carbon foams. International Journal of Thermal Sciences 2004; 43: pp. 689–695CrossRef
21.
go back to reference Saadatfar M., Arns C.H., Knackstedt M.A. and Senden T., Mechanical and transport properties of polymeric foams derived from 3D image. Colloids and Surfaces A: Physicochem. Eng. Aspects 2004; 263: pp. 284–289CrossRef Saadatfar M., Arns C.H., Knackstedt M.A. and Senden T., Mechanical and transport properties of polymeric foams derived from 3D image. Colloids and Surfaces A: Physicochem. Eng. Aspects 2004; 263: pp. 284–289CrossRef
22.
go back to reference Wang M., Pan N., Modeling and prediction of the effective thermal conductivity of random open-cell porous foams. Int J Heat Mass Transf 2008; 51: pp. 1325–1331MATHCrossRef Wang M., Pan N., Modeling and prediction of the effective thermal conductivity of random open-cell porous foams. Int J Heat Mass Transf 2008; 51: pp. 1325–1331MATHCrossRef
23.
go back to reference Coquard R, Baillis D (2009) Numerical investigation of conductive heat transfer in high-porosity foams. Acta Mater 57(18):5466–5479CrossRef Coquard R, Baillis D (2009) Numerical investigation of conductive heat transfer in high-porosity foams. Acta Mater 57(18):5466–5479CrossRef
24.
go back to reference Glicksman L, Marge A, Moreno J (1992) Radiation heat-transfer in cellular foam insulation. In: Developments in radiative heat transfer, vol 203. ASME, pp 45–54 Glicksman L, Marge A, Moreno J (1992) Radiation heat-transfer in cellular foam insulation. In: Developments in radiative heat transfer, vol 203. ASME, pp 45–54
25.
go back to reference Glicksman, L.R., M. Schuetz, and M. Sinofsky, “Radiation Heat Transfer in Foam Insulation,” Int. Jour. Heat Mass Transfer, 30, 1, 187-197, 1987CrossRef Glicksman, L.R., M. Schuetz, and M. Sinofsky, “Radiation Heat Transfer in Foam Insulation,” Int. Jour. Heat Mass Transfer, 30, 1, 187-197, 1987CrossRef
26.
go back to reference C.Y. Zhao, T.J. Lu, H.P. Hodson “Thermal radiation in ultralight metal foams with open cells”, Int J Heat Mass Transf 47 (14-16) (2004) 2927–2939CrossRef C.Y. Zhao, T.J. Lu, H.P. Hodson “Thermal radiation in ultralight metal foams with open cells”, Int J Heat Mass Transf 47 (14-16) (2004) 2927–2939CrossRef
27.
go back to reference C.Y. Zhao, S.A. Tassou, T.J. Lu, “Analytical considerations of thermal radiation in cellular metal foams with open cells”, Int J Heat Mass Transf 51 (14-16) (2008) pp 929–940MATHCrossRef C.Y. Zhao, S.A. Tassou, T.J. Lu, “Analytical considerations of thermal radiation in cellular metal foams with open cells”, Int J Heat Mass Transf 51 (14-16) (2008) pp 929–940MATHCrossRef
28.
go back to reference M. Loretz, R. Coquard, D. Baillis and E. Maire, “Metallic foams: Radiative properties/comparison between different models”, Journal of Quantitative Spectroscopy and Radiative Transfer, 109 (1) (2008) 16-27CrossRef M. Loretz, R. Coquard, D. Baillis and E. Maire, “Metallic foams: Radiative properties/comparison between different models”, Journal of Quantitative Spectroscopy and Radiative Transfer, 109 (1) (2008) 16-27CrossRef
29.
go back to reference M. Loretz, E. Maire and D. Baillis, “Analytical Modeling of the Radiative Properties of Metallic Foams: Contribution of X-Ray Tomography”, ADVANCED ENGINEERING MATERIALS vol. 10, 2008, pp.352-360CrossRef M. Loretz, E. Maire and D. Baillis, “Analytical Modeling of the Radiative Properties of Metallic Foams: Contribution of X-Ray Tomography”, ADVANCED ENGINEERING MATERIALS vol. 10, 2008, pp.352-360CrossRef
30.
go back to reference Zhao CY, Lua TJ, Hodson HP, Jackson JD (2004) The temperature dependence of effective thermal conductivity of open-celled steel alloy foams. Mater Sci Eng A 367(1–2):123–131 Zhao CY, Lua TJ, Hodson HP, Jackson JD (2004) The temperature dependence of effective thermal conductivity of open-celled steel alloy foams. Mater Sci Eng A 367(1–2):123–131
31.
go back to reference R. Coquard, D. Rochais, D. Baillis, “Experimental investigations of the coupled conductive and radiative heat transfer in metallic/ceramic foams”, Int J Heat Mass Transf, Volume 52, Issues 21-22, October 2009, Pages 4907-4918MATHCrossRef R. Coquard, D. Rochais, D. Baillis, “Experimental investigations of the coupled conductive and radiative heat transfer in metallic/ceramic foams”, Int J Heat Mass Transf, Volume 52, Issues 21-22, October 2009, Pages 4907-4918MATHCrossRef
32.
go back to reference Takegoshi, E., Y. Hirasawa, J. Matsuo, and K. Okui, “A Study on Effective Thermal Conductivity of Porous Metals,” Trans. of the Japanese Soc. Of Mech. Eng., 58, 879 (1992)CrossRef Takegoshi, E., Y. Hirasawa, J. Matsuo, and K. Okui, “A Study on Effective Thermal Conductivity of Porous Metals,” Trans. of the Japanese Soc. Of Mech. Eng., 58, 879 (1992)CrossRef
33.
go back to reference Calmidi, V. V., and R. L. Mahajan, “The Effective Thermal Conductivity of High Porosity Fibrous Metal Foams,” J. of Heat Transf., 121, 466 (1999)CrossRef Calmidi, V. V., and R. L. Mahajan, “The Effective Thermal Conductivity of High Porosity Fibrous Metal Foams,” J. of Heat Transf., 121, 466 (1999)CrossRef
34.
go back to reference Paek JW, Kang BH, Kim SY, Hyun JM (2000) Effective thermal conductivity and permeability of aluminum foam materials. Int J Thermophys 21(2):453–464 Paek JW, Kang BH, Kim SY, Hyun JM (2000) Effective thermal conductivity and permeability of aluminum foam materials. Int J Thermophys 21(2):453–464
35.
go back to reference Schmierer E.N., Razani A. “Self-Consistent Open-Celled Metal Foam Model for Thermal Applications”, Journal of Heat Transfer, 2006, Vol. 128, pp. 1194-1203CrossRef Schmierer E.N., Razani A. “Self-Consistent Open-Celled Metal Foam Model for Thermal Applications”, Journal of Heat Transfer, 2006, Vol. 128, pp. 1194-1203CrossRef
36.
go back to reference Mourad Fetoui, Fethi Albouchi, Fabrice Rigollet, and Sassi Ben Nasrallah, “Highly Porous Metal Foams: Effective Thermal Conductivity Measurement Using a Photothermal Technique”, Journal of Porous Media 12(10), 939–954 (2009)CrossRef Mourad Fetoui, Fethi Albouchi, Fabrice Rigollet, and Sassi Ben Nasrallah, “Highly Porous Metal Foams: Effective Thermal Conductivity Measurement Using a Photothermal Technique”, Journal of Porous Media 12(10), 939–954 (2009)CrossRef
37.
go back to reference Doermann D. and Sacadura J.F., “Heat transfer in open-cell foams”, Journal of Heat Transfer, 1996, Vol. 118 pp. 88-93CrossRef Doermann D. and Sacadura J.F., “Heat transfer in open-cell foams”, Journal of Heat Transfer, 1996, Vol. 118 pp. 88-93CrossRef
38.
go back to reference COQUARD R. and Baillis D. “Radiative properties of dense fibrous media in dependent scattering regime”, ASME Journal of Heat Transfer, 2006, vol. 128, n°10, pp. 1022-1030CrossRef COQUARD R. and Baillis D. “Radiative properties of dense fibrous media in dependent scattering regime”, ASME Journal of Heat Transfer, 2006, vol. 128, n°10, pp. 1022-1030CrossRef
39.
go back to reference R. Coquard; D. Baillis, “Radiative Characteristics of Opaque Spherical Particles Beds: A New Method of Prediction”, Journal of Thermophysics and Heat Transfer, 2004, vol.18 n°.2 pp. 178-186CrossRef R. Coquard; D. Baillis, “Radiative Characteristics of Opaque Spherical Particles Beds: A New Method of Prediction”, Journal of Thermophysics and Heat Transfer, 2004, vol.18 n°.2 pp. 178-186CrossRef
40.
go back to reference Siegel R. and Howell J.R., “Thermal radiation heat Transfer”, 3rd ed., Hemisphere Publishing Corp., Washington DC, 1992 Siegel R. and Howell J.R., “Thermal radiation heat Transfer”, 3rd ed., Hemisphere Publishing Corp., Washington DC, 1992
41.
go back to reference Brewster, M. Q., Thermal Radiative Transfer and Properties, Wiley, New York, 1992 Brewster, M. Q., Thermal Radiative Transfer and Properties, Wiley, New York, 1992
42.
go back to reference Barea R, Osendi MI, Ferreira JMF, Miranzo P (2005) Thermal conductivity of highly porous Mullite material. Acta Mater 53(11):3313–3318CrossRef Barea R, Osendi MI, Ferreira JMF, Miranzo P (2005) Thermal conductivity of highly porous Mullite material. Acta Mater 53(11):3313–3318CrossRef
43.
go back to reference David R. Clarke, “Materials selection guidelines for low thermal conductivity thermal barrier coatings”, Surface and Coatings Technology 163–164 (2003) 67–74CrossRef David R. Clarke, “Materials selection guidelines for low thermal conductivity thermal barrier coatings”, Surface and Coatings Technology 163–164 (2003) 67–74CrossRef
44.
go back to reference Loretz M (2008) Caractérisation des Propriétés Thermiques de Mousses Céramiques et Métalliques à partir d’Analyses Tomographiques aux Rayons X. PhD thesis, Institut National des Sciences Appliquées (INSA) de Lyon, Villeurbanne, France, 2008 Loretz M (2008) Caractérisation des Propriétés Thermiques de Mousses Céramiques et Métalliques à partir d’Analyses Tomographiques aux Rayons X. PhD thesis, Institut National des Sciences Appliquées (INSA) de Lyon, Villeurbanne, France, 2008
Metadata
Title
Conductive and Radiative Heat Transfer in Ceramic and Metal Foams at Fire Temperatures
Contribution to the Special Issue “Materials in Fire” Guest Editor K. Ghazi Wakili
Authors
Rémi Coquard
Denis Rochais
Dominique Baillis
Publication date
01-07-2012
Publisher
Springer US
Published in
Fire Technology / Issue 3/2012
Print ISSN: 0015-2684
Electronic ISSN: 1572-8099
DOI
https://doi.org/10.1007/s10694-010-0167-8

Other articles of this Issue 3/2012

Fire Technology 3/2012 Go to the issue