Skip to main content
Top

2022 | OriginalPaper | Chapter

3. Conductive Materials for Printed Flexible Electronics

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Flexible circuits can be produced on polymer film, metal foil, paper, or textile using printing processes and permit futuristic designs with curved diodes or input elements. This requires printable electronic materials that can be printed on the curved substrate surfaces and retain a high level of conductivity during usage even after specified folding and/or stretching. Different materials and their composites have been developed for 3D prinitng and additive manufacturing to fabricate conductive features. These conductive materials could be mainly categorized into metal-based, carbon-based, and organic-based materials as well other conductive materials. The applications have covered photovoltaics, touch screen edge electrodes, automotive and in-mold electronics, PCB, electronic textile and wearable electronics, 3D antennas and conformal printing, EMI shielding, printed sensors, RFID (HF, UHF), TFT and memory, OLED and large-area LED lighting, and more. This chapter will provide an overview of the current status and future trends of typical conductive materials for printed flexible electronics.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Afre RA, Sharma N, Sharon M, Sharon M (2018) Transparent conducting oxide films for various applications: a review. Rev Adv Mater Sci 53:79–89CrossRef Afre RA, Sharma N, Sharon M, Sharon M (2018) Transparent conducting oxide films for various applications: a review. Rev Adv Mater Sci 53:79–89CrossRef
go back to reference Antelman MS (2012) The encyclopedia of chemical electrode potentials. Springer, New York Antelman MS (2012) The encyclopedia of chemical electrode potentials. Springer, New York
go back to reference Brett Walker SB, Lewis JA (2012) Reactive silver inks for patterning high-conductivity features at mild temperatures. J Am Chem Soc 134(3):1419–1421CrossRef Brett Walker SB, Lewis JA (2012) Reactive silver inks for patterning high-conductivity features at mild temperatures. J Am Chem Soc 134(3):1419–1421CrossRef
go back to reference Chen C, Jia Y, Jia D, Li S, Ji S, Ye C (2017) Formulation of concentrated and stable ink of silver nanowires with applications in transparent conductive films. RSC Adv 7:1936–1942CrossRef Chen C, Jia Y, Jia D, Li S, Ji S, Ye C (2017) Formulation of concentrated and stable ink of silver nanowires with applications in transparent conductive films. RSC Adv 7:1936–1942CrossRef
go back to reference Cummins G, Desmulliez MPY (2012) Inkjet printing of conductive materials: a review. Circuit World 38(4):193–213CrossRef Cummins G, Desmulliez MPY (2012) Inkjet printing of conductive materials: a review. Circuit World 38(4):193–213CrossRef
go back to reference Dai B, Fu L, Liao L, Liu N, Yan K, Chen Y, Liu Z (2011) High-quality single-layer graphene via reparative reduction of graphene oxide. Nano Res 4:434–439CrossRef Dai B, Fu L, Liao L, Liu N, Yan K, Chen Y, Liu Z (2011) High-quality single-layer graphene via reparative reduction of graphene oxide. Nano Res 4:434–439CrossRef
go back to reference Davis VA, Parra-Vasquez ANG, Green MJ, Rai PK et al (2009) True solutions of single-walled carbon nanotubes for assembly into macroscopic materials. Nat Nanotechnol 4(12):830–834CrossRef Davis VA, Parra-Vasquez ANG, Green MJ, Rai PK et al (2009) True solutions of single-walled carbon nanotubes for assembly into macroscopic materials. Nat Nanotechnol 4(12):830–834CrossRef
go back to reference De S, Higgins TM, Lyons PE, Doherty EM, Nirmalraj PN, Blau WJ, Boland JJ, Coleman JN (2009) Silver nanowire networks as flexible, transparent, conducting films: extremely high DC to optical conductivity ratios. ACS Nano 3(7):1767–1774CrossRef De S, Higgins TM, Lyons PE, Doherty EM, Nirmalraj PN, Blau WJ, Boland JJ, Coleman JN (2009) Silver nanowire networks as flexible, transparent, conducting films: extremely high DC to optical conductivity ratios. ACS Nano 3(7):1767–1774CrossRef
go back to reference Fang M (2012) Properties of multifunctional oxide thin films deposited by ink-jet printing. PhD dissertation, KTH-Royal Institute of Technology, Stockholm, Sweden Fang M (2012) Properties of multifunctional oxide thin films deposited by ink-jet printing. PhD dissertation, KTH-Royal Institute of Technology, Stockholm, Sweden
go back to reference Ginley DS, Hosono H, Paine DC (2011) Handbook of transparent conductors. Springer, BerlinCrossRef Ginley DS, Hosono H, Paine DC (2011) Handbook of transparent conductors. Springer, BerlinCrossRef
go back to reference Goia DV (2004) Preparation and formation mechanisms of uniform metallic particles in homogeneous solutions. J Mater Chem 14:451–458CrossRef Goia DV (2004) Preparation and formation mechanisms of uniform metallic particles in homogeneous solutions. J Mater Chem 14:451–458CrossRef
go back to reference Henglein A, Giersig M (1999) Formation of colloidal silver nanoparticles: capping action of citrate. J Phys Chem B 103(44):9533–9539CrossRef Henglein A, Giersig M (1999) Formation of colloidal silver nanoparticles: capping action of citrate. J Phys Chem B 103(44):9533–9539CrossRef
go back to reference Hu L, Hecht DS, Grüner G (2010) Carbon nanotube thin films: fabrication, properties, and applications. Chem Rev 110(10):5790–5844CrossRef Hu L, Hecht DS, Grüner G (2010) Carbon nanotube thin films: fabrication, properties, and applications. Chem Rev 110(10):5790–5844CrossRef
go back to reference Hussain I, Singh NB, Singh A, Singh H, Singh SC (2016) Green synthesis of nanoparticles and its potential application. Biotechnol Lett 38(4):545–560CrossRef Hussain I, Singh NB, Singh A, Singh H, Singh SC (2016) Green synthesis of nanoparticles and its potential application. Biotechnol Lett 38(4):545–560CrossRef
go back to reference Janiak C (2013) Metal nanoparticle synthesis in ionic liquids. In: Dupont J, Kollár L (eds) Ionic liquids (ILs) in organometallic catalysis, Topics in organometallic chemistry, vol 51. Springer, BerlinCrossRef Janiak C (2013) Metal nanoparticle synthesis in ionic liquids. In: Dupont J, Kollár L (eds) Ionic liquids (ILs) in organometallic catalysis, Topics in organometallic chemistry, vol 51. Springer, BerlinCrossRef
go back to reference Jayathilake DSY, Nirmal Peiris TA (2018) Overview on transparent conducting oxides and state of the art of low-cost doped ZnO systems. SF J Material Chem Eng 1(1):1004 Jayathilake DSY, Nirmal Peiris TA (2018) Overview on transparent conducting oxides and state of the art of low-cost doped ZnO systems. SF J Material Chem Eng 1(1):1004
go back to reference Kamyshny A, Magdassi S (2014) Conductive nanomaterials for printed electronics. Small 10(17):1–21CrossRef Kamyshny A, Magdassi S (2014) Conductive nanomaterials for printed electronics. Small 10(17):1–21CrossRef
go back to reference Kamyshny A, Steinke J, Magdassi S (2011) Metal-based inkjet inks for printed electronics. Open Appl Phys J 4:19–36CrossRef Kamyshny A, Steinke J, Magdassi S (2011) Metal-based inkjet inks for printed electronics. Open Appl Phys J 4:19–36CrossRef
go back to reference Kim I, Kim Y, Woo K, Ryu E-H, Yon K-Y, Cao G, Moon J (2013) Synthesis of oxidation-resistant core–shell copper nanoparticles. RSC Adv 3:15169–15177CrossRef Kim I, Kim Y, Woo K, Ryu E-H, Yon K-Y, Cao G, Moon J (2013) Synthesis of oxidation-resistant core–shell copper nanoparticles. RSC Adv 3:15169–15177CrossRef
go back to reference Kim K, Ahn SI, Choi KC (2014) Simultaneous synthesis and patterning of graphene electrodes by reactive inkjet printing. Carbon 66:172–177CrossRef Kim K, Ahn SI, Choi KC (2014) Simultaneous synthesis and patterning of graphene electrodes by reactive inkjet printing. Carbon 66:172–177CrossRef
go back to reference Ladd C, So JH, Muth J, Dickey MD (2013) 3D printing of free standing liquid metal microstructures. Adv Mater 25:5081–5085CrossRef Ladd C, So JH, Muth J, Dickey MD (2013) 3D printing of free standing liquid metal microstructures. Adv Mater 25:5081–5085CrossRef
go back to reference Layani M, Cooperstein I, Magdassi S (2013) UV crosslinkable emulsions with silver nanoparticles for inkjet printing of conductive 3D structures. J Mater Chem C 1(19):3244–3249CrossRef Layani M, Cooperstein I, Magdassi S (2013) UV crosslinkable emulsions with silver nanoparticles for inkjet printing of conductive 3D structures. J Mater Chem C 1(19):3244–3249CrossRef
go back to reference Lee Y, Choi JR, Lee KJ, Stott NE, Kim D (2008) Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics. Nanotechnology 19(41):415604CrossRef Lee Y, Choi JR, Lee KJ, Stott NE, Kim D (2008) Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics. Nanotechnology 19(41):415604CrossRef
go back to reference Lee C-L, Chen C-H, Chen CW (2013) Graphene nanosheets as ink particles for inkjet printing on flexible board. Chem Eng J 230:296–302CrossRef Lee C-L, Chen C-H, Chen CW (2013) Graphene nanosheets as ink particles for inkjet printing on flexible board. Chem Eng J 230:296–302CrossRef
go back to reference Leem D-S, Edwards A, Faist M, Nelson J, Bradley DDC, de Mello JC (2011) Efficient organic solar cells with solution-processed silver nanowire electrodes. Adv Mater 23:4371–4375CrossRef Leem D-S, Edwards A, Faist M, Nelson J, Bradley DDC, de Mello JC (2011) Efficient organic solar cells with solution-processed silver nanowire electrodes. Adv Mater 23:4371–4375CrossRef
go back to reference Leuchinger NA, Athanassiou EK, Stark WJ (2008) Graphene-stabilized copper nanoparticles as an air-stable substitute for silver and gold in low-cost ink-jet printable electronics. Nanotechnology 19(44):445201CrossRef Leuchinger NA, Athanassiou EK, Stark WJ (2008) Graphene-stabilized copper nanoparticles as an air-stable substitute for silver and gold in low-cost ink-jet printable electronics. Nanotechnology 19(44):445201CrossRef
go back to reference Li D, Sutton D, Burgess A, Grahamb D, Calvert PD (2009) Conductive copper and nickel lines via reactive inkjet printing. J Mater Chem 19:3719–3724CrossRef Li D, Sutton D, Burgess A, Grahamb D, Calvert PD (2009) Conductive copper and nickel lines via reactive inkjet printing. J Mater Chem 19:3719–3724CrossRef
go back to reference Maruyama T, Kojima A (1988) Indium-tin oxide thin films prepared by thermal decomposition of metallic complex salts. Jpn J Appl Phys 27(10A):L1829CrossRef Maruyama T, Kojima A (1988) Indium-tin oxide thin films prepared by thermal decomposition of metallic complex salts. Jpn J Appl Phys 27(10A):L1829CrossRef
go back to reference Mohammed AA (2017) Development of a new stretchable and screen printable conductive ink. PhD dissertation, University of Maryland, College Park Mohammed AA (2017) Development of a new stretchable and screen printable conductive ink. PhD dissertation, University of Maryland, College Park
go back to reference Natsuki J, Natsuki T, Hashimoto Y (2015) A review of silver nanoparticles: synthesis methods, properties and applications. Int J Mater Sci Appl 4(5):325–332 Natsuki J, Natsuki T, Hashimoto Y (2015) A review of silver nanoparticles: synthesis methods, properties and applications. Int J Mater Sci Appl 4(5):325–332
go back to reference Nir MN, Zamir D, Haymov I, Ben-Asher L, Cohen O, Faulkner B, De La Vega F (2010) Electrically conductive inks for inkjet printing. In: Magdassi S (ed) Chemistry of inkjet inks. World Scientific, New Jersey, pp 225–254 Nir MN, Zamir D, Haymov I, Ben-Asher L, Cohen O, Faulkner B, De La Vega F (2010) Electrically conductive inks for inkjet printing. In: Magdassi S (ed) Chemistry of inkjet inks. World Scientific, New Jersey, pp 225–254
go back to reference Pajor-Świerzy A, Farraj Y, Kamyshny A, Magdassi S (2017) Air stable copper-silver core-shell submicron particles: synthesis and conductive ink formulation. Colloids Surf A Physicochem Eng Asp 521:272–280CrossRef Pajor-Świerzy A, Farraj Y, Kamyshny A, Magdassi S (2017) Air stable copper-silver core-shell submicron particles: synthesis and conductive ink formulation. Colloids Surf A Physicochem Eng Asp 521:272–280CrossRef
go back to reference Parekh DP, Ladd C, Panich L, Moussa K, Dickey MD (2016) 3D printing of liquid metals as fugitive inks for fabrication of 3D microfluidic channels. Lab Chip 16:1812–1820CrossRef Parekh DP, Ladd C, Panich L, Moussa K, Dickey MD (2016) 3D printing of liquid metals as fugitive inks for fabrication of 3D microfluidic channels. Lab Chip 16:1812–1820CrossRef
go back to reference Prasek J, Drbohlavova J, Chomoucka J, Hubalek J, Jasek O, Adam V, Kizek R (2011) Methods for carbon nanotubes synthesis—review. J Mater Chem 21(40):15872CrossRef Prasek J, Drbohlavova J, Chomoucka J, Hubalek J, Jasek O, Adam V, Kizek R (2011) Methods for carbon nanotubes synthesis—review. J Mater Chem 21(40):15872CrossRef
go back to reference Rathmell AR, Nguen M, Chi M, Wiley BJ (2012) Synthesis of oxidation-resistant cupronickel nanowires for transparent conducting nanowire networks. Nano Lett 12(6):3193–3199CrossRef Rathmell AR, Nguen M, Chi M, Wiley BJ (2012) Synthesis of oxidation-resistant cupronickel nanowires for transparent conducting nanowire networks. Nano Lett 12(6):3193–3199CrossRef
go back to reference Sankir ND (2005) Flexible electronics: materials and device fabrication. PhD dissertation, Virginia Polytechnic Institute and State University, Blacksburg, Virginia Sankir ND (2005) Flexible electronics: materials and device fabrication. PhD dissertation, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
go back to reference Sarkar A, Mukherjee T, Kapoor S (2008) PVP-stabilized copper nanoparticles: a reusable catalyst for “click” reaction between terminal alkynes and azides in nonaqueous solvents. J Phys Chem C112(9):3334–3340 Sarkar A, Mukherjee T, Kapoor S (2008) PVP-stabilized copper nanoparticles: a reusable catalyst for “click” reaction between terminal alkynes and azides in nonaqueous solvents. J Phys Chem C112(9):3334–3340
go back to reference Shi H, Liu C, Xu J, Song H, Lu B, Jiang F, Zhou W, Zhang G, Jiang Q (2013) Facile fabrication of PEDOT:PSS/polythiophenes bilayered nanofilms on pure organic electrodes and their thermoelectric performance. ACS Appl Mater Interfaces 5(24):12811–12819CrossRef Shi H, Liu C, Xu J, Song H, Lu B, Jiang F, Zhou W, Zhang G, Jiang Q (2013) Facile fabrication of PEDOT:PSS/polythiophenes bilayered nanofilms on pure organic electrodes and their thermoelectric performance. ACS Appl Mater Interfaces 5(24):12811–12819CrossRef
go back to reference Song J, Jiang H, Choi WM, Khang DY, Huang Y, Rogers JA (2008) An analytical study of two-dimensional buckling of thin films on compliant substrates. J Appl Phys 103(1):014303CrossRef Song J, Jiang H, Choi WM, Khang DY, Huang Y, Rogers JA (2008) An analytical study of two-dimensional buckling of thin films on compliant substrates. J Appl Phys 103(1):014303CrossRef
go back to reference Song J, Kulinich SA, Li J, Liu Y, Zeng H (2015) A general one-pot strategy for the synthesis of high-performance transparent-conducting-oxide nanocrystal inks for all-solution-processed devices. Angew Chem Int Ed Engl 54(2):462–466 Song J, Kulinich SA, Li J, Liu Y, Zeng H (2015) A general one-pot strategy for the synthesis of high-performance transparent-conducting-oxide nanocrystal inks for all-solution-processed devices. Angew Chem Int Ed Engl 54(2):462–466
go back to reference Sun Y, Xia Y (2002) Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process. Adv Mater 14(11):833CrossRef Sun Y, Xia Y (2002) Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process. Adv Mater 14(11):833CrossRef
go back to reference Sun Y, Choi WM, Jiang H, Huang YY, Rogers JA (2006) Controlled buckling of semiconductor nanoribbons for stretchable electronics. Nat Nanotechnol 1(3):201–207CrossRef Sun Y, Choi WM, Jiang H, Huang YY, Rogers JA (2006) Controlled buckling of semiconductor nanoribbons for stretchable electronics. Nat Nanotechnol 1(3):201–207CrossRef
go back to reference Teranishi T, Miyake M (1998) Size control of palladium nanoparticles and their crystal structures. Chem Mater 10:594–600CrossRef Teranishi T, Miyake M (1998) Size control of palladium nanoparticles and their crystal structures. Chem Mater 10:594–600CrossRef
go back to reference Vacca A, Mascia M, Rizzardini S, Corgiolu S, Palmas S, Demelas M, Annalisa Bonfiglio A, Riccic PC (2015) Preparation and characterisation of transparent and flexible PEDOT:PSS/PANI electrodes by ink-jet printing and electropolymerisation. RSC Adv 5:79600CrossRef Vacca A, Mascia M, Rizzardini S, Corgiolu S, Palmas S, Demelas M, Annalisa Bonfiglio A, Riccic PC (2015) Preparation and characterisation of transparent and flexible PEDOT:PSS/PANI electrodes by ink-jet printing and electropolymerisation. RSC Adv 5:79600CrossRef
go back to reference Wajid AS, Das S, Irin F, Ahmed HST, Shelburne JL, Parviz D, Fullerton RJ, Jankowski AF, Hedden RC, Green MJ (2012) Polymer-stabilized graphene dispersions at high concentrations in organic solvents for composite production. Carbon 50:526–534CrossRef Wajid AS, Das S, Irin F, Ahmed HST, Shelburne JL, Parviz D, Fullerton RJ, Jankowski AF, Hedden RC, Green MJ (2012) Polymer-stabilized graphene dispersions at high concentrations in organic solvents for composite production. Carbon 50:526–534CrossRef
go back to reference Wang Y, Li Z, Xiao J (2016) Stretchable thin film materials: fabrication, application, and mechanics. J Electron Packag 138(2):020801CrossRef Wang Y, Li Z, Xiao J (2016) Stretchable thin film materials: fabrication, application, and mechanics. J Electron Packag 138(2):020801CrossRef
go back to reference Wu C, Mosher BP, Zeng T (2006) One-step green route to narrowly dispersed copper nanocrystals. J Nanopart Res 8(6):965–969CrossRef Wu C, Mosher BP, Zeng T (2006) One-step green route to narrowly dispersed copper nanocrystals. J Nanopart Res 8(6):965–969CrossRef
go back to reference Xia N, Gerhardt RA (2016) Fabrication and characterization of highly transparent and conductive indium tin oxide films made with different solution-based methods. Mater Res Exp 3(11):116408CrossRef Xia N, Gerhardt RA (2016) Fabrication and characterization of highly transparent and conductive indium tin oxide films made with different solution-based methods. Mater Res Exp 3(11):116408CrossRef
go back to reference Xia Y, Zhanga H, Ouyang J (2010) Highly conductive PEDOT:PSS films prepared through a treatment with zwitterions and their application in polymer photovoltaic cells. J Mater Chem 20:9740–9747CrossRef Xia Y, Zhanga H, Ouyang J (2010) Highly conductive PEDOT:PSS films prepared through a treatment with zwitterions and their application in polymer photovoltaic cells. J Mater Chem 20:9740–9747CrossRef
go back to reference Xu S, Yan Z, Jang KI et al (2015) Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. Science 347(6218):154–159CrossRef Xu S, Yan Z, Jang KI et al (2015) Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. Science 347(6218):154–159CrossRef
Metadata
Title
Conductive Materials for Printed Flexible Electronics
Author
Colin Tong
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-79804-8_3