Skip to main content
Top

2024 | OriginalPaper | Chapter

Congruent Numbers and Class Groups of Associated Quadratic Fields

Authors : Shamik Das, Anupam Saikia

Published in: Class Groups of Number Fields and Related Topics

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this article, we first discuss congruent numbers and certain recent results concerning their generalizations. Then we review some recent results concerning the 2-part of the class group of \(\mathbb {Q}(\sqrt{\pm n})\) for a congruent number n. We conclude with a sufficient congruence condition for a prime p so that 2p is non-congruent.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
2.
go back to reference Birch, B.J., Swinnerton-Dyer, H.P.F.: Notes on elliptic curves. II. J. Reine Angew. Math. 218, 79–108 (1965) Birch, B.J., Swinnerton-Dyer, H.P.F.: Notes on elliptic curves. II. J. Reine Angew. Math. 218, 79–108 (1965)
5.
go back to reference Chakraborty, D., Ghale, V., Saikia, A.: Construction of an infinite family of elliptic curves of \(2\)-Selmer rank \(1\) from Heron triangles. Res. Number Theory 8, 101, 9 (2022) Chakraborty, D., Ghale, V., Saikia, A.: Construction of an infinite family of elliptic curves of \(2\)-Selmer rank \(1\) from Heron triangles. Res. Number Theory 8, 101, 9 (2022)
7.
go back to reference Cremona, J.E., Serf, P.: Computing the rank of elliptic curves over real quadratic number fields of class number \(1\). Math. Comput. 68, 1187–1200 (1999)MathSciNetCrossRef Cremona, J.E., Serf, P.: Computing the rank of elliptic curves over real quadratic number fields of class number \(1\). Math. Comput. 68, 1187–1200 (1999)MathSciNetCrossRef
8.
go back to reference Daniels, H.B., González-Jiménez, E.: On the torsion of rational elliptic curves over sextic fields. Math. Comput. 89(321), 411–435 (2020)MathSciNetCrossRef Daniels, H.B., González-Jiménez, E.: On the torsion of rational elliptic curves over sextic fields. Math. Comput. 89(321), 411–435 (2020)MathSciNetCrossRef
9.
go back to reference Das, S., Saikia, A.: On \(\theta \) -congruent numbers over real number fields. Bull. Aust. Math. Soc. 103, 218–229 (2021)MathSciNetCrossRef Das, S., Saikia, A.: On \(\theta \) -congruent numbers over real number fields. Bull. Aust. Math. Soc. 103, 218–229 (2021)MathSciNetCrossRef
10.
go back to reference Das, S., Saikia, A.: On the \(2\) -part of the class number of \(\mathbb{Q}\)\((\sqrt{\pm D})\) for a congruent number \(D\). Res. Number Theory 8, 78, 9 (2022) Das, S., Saikia, A.: On the \(2\) -part of the class number of \(\mathbb{Q}\)\((\sqrt{\pm D})\) for a congruent number \(D\). Res. Number Theory 8, 78, 9 (2022)
11.
go back to reference Das, S., Saikia, A.: A necessary condition for \(p\)and\(2p\) to be congruent for a prime \(p\equiv \) 1 (mod 8). J. Pure Appl. Algebra 227, 107335, 12 (2023) Das, S., Saikia, A.: A necessary condition for \(p\)and\(2p\) to be congruent for a prime \(p\equiv \) 1 (mod 8). J. Pure Appl. Algebra 227, 107335, 12 (2023)
12.
go back to reference Dickson, L.E.: History of the Theory of Numbers. Volume II: Diophantine Analysis. Chelsea Publishing Co., New York (1966) Dickson, L.E.: History of the Theory of Numbers. Volume II: Diophantine Analysis. Chelsea Publishing Co., New York (1966)
13.
go back to reference Dujella, A., Peral, J.C.: Elliptic curves coming from Heron triangles. Rocky Mountain J. Math. 44, 1145–1160 (2014)MathSciNetCrossRef Dujella, A., Peral, J.C.: Elliptic curves coming from Heron triangles. Rocky Mountain J. Math. 44, 1145–1160 (2014)MathSciNetCrossRef
14.
go back to reference Fujiwara, M.: \(\theta \) -congruent numbers. In: Number theory (Eger,: de Gruyter. Berlin 1998, 235–241 (1996) Fujiwara, M.: \(\theta \) -congruent numbers. In: Number theory (Eger,: de Gruyter. Berlin 1998, 235–241 (1996)
15.
go back to reference Girondo, E., González-Diez, G., González-Jiménez, E., Steuding, R., Steuding, J.: Right triangles with algebraic sides and elliptic curves over number fields. Math. Slovaca 59, 299–306 (2009)MathSciNetCrossRef Girondo, E., González-Diez, G., González-Jiménez, E., Steuding, R., Steuding, J.: Right triangles with algebraic sides and elliptic curves over number fields. Math. Slovaca 59, 299–306 (2009)MathSciNetCrossRef
16.
17.
go back to reference González-Jiménez, E.: Complete classification of the torsion structures of rational elliptic curves over quintic number fields. J. Algebra 478, 484–505 (2017)MathSciNetCrossRef González-Jiménez, E.: Complete classification of the torsion structures of rational elliptic curves over quintic number fields. J. Algebra 478, 484–505 (2017)MathSciNetCrossRef
18.
go back to reference González-Jiménez, E., Najman, F.: Growth of torsion groups of elliptic curves upon base change. Math. Comput. 89, 1457–1485 (2020)MathSciNetCrossRef González-Jiménez, E., Najman, F.: Growth of torsion groups of elliptic curves upon base change. Math. Comput. 89, 1457–1485 (2020)MathSciNetCrossRef
19.
go back to reference González-Jiménez, E., Najman, F., Tornero, J.M.: Torsion of rational elliptic curves over cubic fields. Rocky Mountain J. Math. 46, 1899–1917 (2016)MathSciNetCrossRef González-Jiménez, E., Najman, F., Tornero, J.M.: Torsion of rational elliptic curves over cubic fields. Rocky Mountain J. Math. 46, 1899–1917 (2016)MathSciNetCrossRef
20.
go back to reference Halbeisen, L., Hungerbühler, N.: Heron triangles and their elliptic curves. J. Number Theory 213, 232–253 (2020)MathSciNetCrossRef Halbeisen, L., Hungerbühler, N.: Heron triangles and their elliptic curves. J. Number Theory 213, 232–253 (2020)MathSciNetCrossRef
21.
22.
go back to reference Heath-Brown, D.R.: The size of Selmer groups for the congruent number problem. II, Invent. Math. 118, 331–370 (1994). With an appendix by P. Monsky Heath-Brown, D.R.: The size of Selmer groups for the congruent number problem. II, Invent. Math. 118, 331–370 (1994). With an appendix by P. Monsky
24.
go back to reference Janfada, A.S., Salami, S.: On \(\theta \) -congruent numbers on real quadratic number fields. Kodai Math. J. 38, 352–364 (2015)MathSciNetCrossRef Janfada, A.S., Salami, S.: On \(\theta \) -congruent numbers on real quadratic number fields. Kodai Math. J. 38, 352–364 (2015)MathSciNetCrossRef
27.
go back to reference Kaplan, P.: Sur le \(2\) -groupe des classes d’idéaux des corps quadratiques. J. Reine Angew. Math. 283(284), 313–363 (1976)MathSciNet Kaplan, P.: Sur le \(2\) -groupe des classes d’idéaux des corps quadratiques. J. Reine Angew. Math. 283(284), 313–363 (1976)MathSciNet
28.
go back to reference Kazalicki, M.: Congruent numbers and congruences between half-integral weight modular forms. J. Number Theory 133, 1079–1085 (2013)MathSciNetCrossRef Kazalicki, M.: Congruent numbers and congruences between half-integral weight modular forms. J. Number Theory 133, 1079–1085 (2013)MathSciNetCrossRef
29.
go back to reference Koblitz, N.: Introduction to elliptic curves and modular forms. In: Graduate Texts in Mathematics, vol. 97. Springer, New York (1984) Koblitz, N.: Introduction to elliptic curves and modular forms. In: Graduate Texts in Mathematics, vol. 97. Springer, New York (1984)
31.
go back to reference Najman, F.: Torsion of rational elliptic curves over cubic fields and sporadic points on \(X_1(n)\). Math. Res. Lett. 23, 245–272 (2016)MathSciNetCrossRef Najman, F.: Torsion of rational elliptic curves over cubic fields and sporadic points on \(X_1(n)\). Math. Res. Lett. 23, 245–272 (2016)MathSciNetCrossRef
32.
go back to reference Prasad, D., Yogananda, C.S.: Bounding the torsion in CM elliptic curves. C. R. Math. Acad. Sci. Soc. R. Can. 23, 1–5 (2001)MathSciNet Prasad, D., Yogananda, C.S.: Bounding the torsion in CM elliptic curves. C. R. Math. Acad. Sci. Soc. R. Can. 23, 1–5 (2001)MathSciNet
33.
go back to reference Serf, P.: Congruent numbers and elliptic curves. In: Computational Number Theory (Debrecen,: de Gruyter), vol. 1991, pp. 227–238. Berlin (1989) Serf, P.: Congruent numbers and elliptic curves. In: Computational Number Theory (Debrecen,: de Gruyter), vol. 1991, pp. 227–238. Berlin (1989)
34.
go back to reference Silverman, J.H.: The arithmetic of elliptic curves. In: Graduate Texts in Mathematics, vol. 106, 2nd edn. Springer, Dordrecht (2009) Silverman, J.H.: The arithmetic of elliptic curves. In: Graduate Texts in Mathematics, vol. 106, 2nd edn. Springer, Dordrecht (2009)
37.
go back to reference Tunnell, J.B.: A classical Diophantine problem and modular forms of weight 3/2. Invent. Math. 72, 323–334 (1983) Tunnell, J.B.: A classical Diophantine problem and modular forms of weight 3/2. Invent. Math. 72, 323–334 (1983)
Metadata
Title
Congruent Numbers and Class Groups of Associated Quadratic Fields
Authors
Shamik Das
Anupam Saikia
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-6911-7_7

Premium Partner