Skip to main content
Top

2024 | OriginalPaper | Chapter

Connecting the Deep Quench Obstacle Problem with Surface Diffusion via Their Steady States

Authors : Eric A. Carlen, Amy Novick-Cohen, Lydia Peres Hari

Published in: From Particle Systems to Partial Differential Equations

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The chapter focuses on the Deep Quench Obstacle Problem (DQOP) and its connection with motion by surface diffusion (SD). It discusses the steady states of both models, emphasizing minimum energy configurations and the conditions under which they exist. The text also explores the dynamics of phase separation and the challenges in mathematically justifying the transition between diffuse and sharp interface descriptions. Additionally, it outlines tools for bridging the two evolutions and highlights the attractor dynamics for both DQOP and SD, suggesting similar stability properties. The chapter concludes with a discussion on minimizing motion evolution formulations and the potential for a rigorous connection between the two evolutions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
Here E(t) has been scaled so that typically as equilibrium is approached, \(E(t) \propto \frac{{L}(t)}{|\varOmega |}\), where L(t) reflects the length of the interface of between the two phases following phase separation; see [2].
 
2
Here \(\text {Ent}(t)\) reflects the physical entropy of the system, while E(t) is a (scaled) free energy.
 
3
If \(v_q\) vanishes at some point \(\bar{q} \in (q_-, q_+)\), then Sturm’s Separation Theorem [11] implies that v vanishes at least once in each of the intervals \([q_-, \bar{q}]\), \([\bar{q}, q_+],\) and hence v cannot be monotone.
 
Literature
1.
go back to reference Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1972) Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1972)
2.
go back to reference Baňas, L., Novick-Cohen, A., Nürnberg, R.: The degenerate and non-degenerate deep quench obstacle problem: a numerical comparison. Netw. Heterog. Media 8, 37–64 (2013)MathSciNetCrossRef Baňas, L., Novick-Cohen, A., Nürnberg, R.: The degenerate and non-degenerate deep quench obstacle problem: a numerical comparison. Netw. Heterog. Media 8, 37–64 (2013)MathSciNetCrossRef
3.
go back to reference Brothers, J.E., Ziemer, W.P.: Minimal rearrangements of Sobolev functions. J. Reine. Angew. Math. 384, 153–179 (1988)MathSciNet Brothers, J.E., Ziemer, W.P.: Minimal rearrangements of Sobolev functions. J. Reine. Angew. Math. 384, 153–179 (1988)MathSciNet
4.
go back to reference Carlen, E.A., Carvalho, M.C., Orlandi, E.: Approximate solutions of the Cahn-Hilliard equation via corrections to the Mullins-Sekerka motion. Arch. Ratio. Mech. Anal. 178, 1–55 (2005)MathSciNetCrossRef Carlen, E.A., Carvalho, M.C., Orlandi, E.: Approximate solutions of the Cahn-Hilliard equation via corrections to the Mullins-Sekerka motion. Arch. Ratio. Mech. Anal. 178, 1–55 (2005)MathSciNetCrossRef
5.
go back to reference Chen, X.: Global asymptotic limit of solutions of the Cahn-Hilliard equation. J. Differ. Geom. 44, 262–311 (1996)MathSciNetCrossRef Chen, X.: Global asymptotic limit of solutions of the Cahn-Hilliard equation. J. Differ. Geom. 44, 262–311 (1996)MathSciNetCrossRef
6.
go back to reference Cahn, J.W., Elliott, C.M., Novick-Cohen, A.: The Cahn-Hilliard equation with a concentration dependent mobility: motion by minus the Laplacian of the mean curvature. Eur. J. Appl. Math. 7, 287–301 (1996) Cahn, J.W., Elliott, C.M., Novick-Cohen, A.: The Cahn-Hilliard equation with a concentration dependent mobility: motion by minus the Laplacian of the mean curvature. Eur. J. Appl. Math. 7, 287–301 (1996)
7.
go back to reference de Figueiredo, D.G., dos Santos, E.M., Miyagaki, O.H.: Sobolev spaces of symmetric functions and applications. J. Funct. Anal. 261, 3735–3770 (2011)MathSciNetCrossRef de Figueiredo, D.G., dos Santos, E.M., Miyagaki, O.H.: Sobolev spaces of symmetric functions and applications. J. Funct. Anal. 261, 3735–3770 (2011)MathSciNetCrossRef
8.
go back to reference Dolbeault, J., Nazaret, B., Savaré, G.: A new class of transport distances between measures. Calc. Var. Part. Differ. 34, 193–231 (2009)MathSciNetCrossRef Dolbeault, J., Nazaret, B., Savaré, G.: A new class of transport distances between measures. Calc. Var. Part. Differ. 34, 193–231 (2009)MathSciNetCrossRef
9.
go back to reference Elliott, C.M., Luckhaus, S.: A generalized diffusion equation for phase separation of a multi-component mixture with interfacial free energy. University of Minnesota, IMA Preprint 887 (1991) Elliott, C.M., Luckhaus, S.: A generalized diffusion equation for phase separation of a multi-component mixture with interfacial free energy. University of Minnesota, IMA Preprint 887 (1991)
10.
go back to reference Fonseca, I., Fusco, N., Leoni, G., Morini, M.: Motion of elastic thin films by anisotropic surface diffusion with curvature regularization. Arch. Ratio. Mech. Anal. 205, 425–466 (2012)MathSciNetCrossRef Fonseca, I., Fusco, N., Leoni, G., Morini, M.: Motion of elastic thin films by anisotropic surface diffusion with curvature regularization. Arch. Ratio. Mech. Anal. 205, 425–466 (2012)MathSciNetCrossRef
11.
go back to reference Hartman, P.: Ordinary Differential Equations, 2nd edn. SIAM, Philadelphia (2002) Hartman, P.: Ordinary Differential Equations, 2nd edn. SIAM, Philadelphia (2002)
12.
go back to reference Jerrard, R.L., Sternberg, P.: Critical points via \(\Gamma \)-convergence: general theory and applications. J. Eur. Math. Soc. (JEMS) 11, 705–753 (2009)MathSciNetCrossRef Jerrard, R.L., Sternberg, P.: Critical points via \(\Gamma \)-convergence: general theory and applications. J. Eur. Math. Soc. (JEMS) 11, 705–753 (2009)MathSciNetCrossRef
14.
go back to reference Lisini, S., Matthes, D., Savaré, G.: Cahn-Hilliard and thin film equation with nonlinear mobility as gradient flows in weighted-Wasserstein metrics. J. Differ. Equ. 253, 814–850 (2012)MathSciNetCrossRef Lisini, S., Matthes, D., Savaré, G.: Cahn-Hilliard and thin film equation with nonlinear mobility as gradient flows in weighted-Wasserstein metrics. J. Differ. Equ. 253, 814–850 (2012)MathSciNetCrossRef
15.
go back to reference Mullins, W.W.: Theory of thermal grooving. J. Appl. Phys. 28, 333–339 (1957)CrossRef Mullins, W.W.: Theory of thermal grooving. J. Appl. Phys. 28, 333–339 (1957)CrossRef
17.
go back to reference Novick-Cohen, A.: Upper bounds for coarsening for the deep quench obstacle problem. J. Stat. Phys. 141, 142–157 (2010)MathSciNetCrossRef Novick-Cohen, A.: Upper bounds for coarsening for the deep quench obstacle problem. J. Stat. Phys. 141, 142–157 (2010)MathSciNetCrossRef
18.
go back to reference Novick-Cohen, A., Shishkov, A.: Upper bounds for coarsening for the degenerate Cahn-Hilliard equation. Discret. Contin. Dyn. Syst. 25, 251–272 (2009)MathSciNetCrossRef Novick-Cohen, A., Shishkov, A.: Upper bounds for coarsening for the degenerate Cahn-Hilliard equation. Discret. Contin. Dyn. Syst. 25, 251–272 (2009)MathSciNetCrossRef
19.
go back to reference Olver, F.W.J., Olde Daalhuis, A.B., Lozier, D.W., Schneider, B.I., Boisvert, R.F., Clark, C.W., Miller, B.R., Saunders, B.V., Cohl, H.S., McClain, M.A. (eds.): NIST Digital Library of Mathematical Functions. https://dlmf.nist.gov/, Release 1.1.10 of 2023-06-15. (see also: [1]) Olver, F.W.J., Olde Daalhuis, A.B., Lozier, D.W., Schneider, B.I., Boisvert, R.F., Clark, C.W., Miller, B.R., Saunders, B.V., Cohl, H.S., McClain, M.A. (eds.): NIST Digital Library of Mathematical Functions. https://​dlmf.​nist.​gov/​, Release 1.1.10 of 2023-06-15. (see also: [1])
20.
go back to reference Oono, Y., Puri, S.: Study of phase-separation dynamics by use of cell dynamical systems. I. Modeling. Phys. Rev. A 38, 434–453 (1988) Oono, Y., Puri, S.: Study of phase-separation dynamics by use of cell dynamical systems. I. Modeling. Phys. Rev. A 38, 434–453 (1988)
21.
go back to reference Sternberg, P.: The effect of a singular perturbation on nonconvex variational problems. Arch. Ratio. Mech. Anal. 101, 209–260 (1988)MathSciNetCrossRef Sternberg, P.: The effect of a singular perturbation on nonconvex variational problems. Arch. Ratio. Mech. Anal. 101, 209–260 (1988)MathSciNetCrossRef
22.
go back to reference Taylor, J.E., Cahn, J.W.: Linking anisotropic sharp and diffuse surface motion laws via gradient flows. J. Stat. Phys. 77, 183–197 (1994)MathSciNetCrossRef Taylor, J.E., Cahn, J.W.: Linking anisotropic sharp and diffuse surface motion laws via gradient flows. J. Stat. Phys. 77, 183–197 (1994)MathSciNetCrossRef
23.
Metadata
Title
Connecting the Deep Quench Obstacle Problem with Surface Diffusion via Their Steady States
Authors
Eric A. Carlen
Amy Novick-Cohen
Lydia Peres Hari
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-65195-3_11

Premium Partner