Skip to main content
Top

2024 | OriginalPaper | Chapter

Connections of Class Numbers to the Group Structure of Generalized Pythagorean Triples

Authors : Thomas Jaklitsch, Thomas C. Martinez, Steven J. Miller, Sagnik Mukherjee

Published in: Class Groups of Number Fields and Related Topics

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Two well-studied Diophantine equations are those of Pythagorean triples and elliptic curves, for the first we have a parametrization through rational points on the unit circle, and for the second we have a structure theorem for the group of rational solutions. Recently Yekutieli discussed a connection between these two problems, and described the group structure of Pythagorean triples and the number of triples for a given hypotenuse. In [5] we generalized these methods and results to Pell’s equation. We find a similar group structure and count on the number of solutions for a given z to \(x^2 + Dy^2 = z^2\) when D is 1 or 2 modulo 4 and the class group of \(\mathbb {Q}[\sqrt{-D}]\) is a free \(\ensuremath {\mathbb {Z}}_2\) module, which always happens if the class number is at most 2. In this paper we discuss the main results of [5] using some concrete examples in the case of \(D=105\).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
Mazur [6, 7] proved that there are only 15 possibilities for \(\mathbb {T}\): \(\ensuremath {\mathbb {Z}}/N\ensuremath {\mathbb {Z}}\) for \(N \in \{1,\dots , 10, 12\}\) and \(\ensuremath {\mathbb {Z}}_2 \oplus \ensuremath {\mathbb {Z}}/2N\ensuremath {\mathbb {Z}}\) with \(N \in \{1, \dots , 4\}\). The possible values of the rank are still a mystery. In 1938, Billing found an elliptic curve with rank 3. The largest known rank increased slowly over the years, with the current record due to Elkies in 2006, and is rank at least 28 (see [3] for a more comprehensive historical data on elliptic curve records). While originally it was conjectured that the rank can be arbitrarily large, now some models (see [12]) suggest that there may only be finitely many curves with rank exceeding 28.
 
2
We would have \(2a^2 = c^2\) and thus \(\sqrt{2} = c/a \in \mathbb {Q}\).
 
3
Note that given any solution \((x_0,y_0,z_0)\) to (1.6) we can generate infinitely many solutions out of this particular solutions, for example \((dx_0,dy_0,dz_0)\), \((ey_0,ex_0,ez_0)\) for any arbitrary integer d and e. Thus by introducing this notion of normalized solution we are just considering the non-trivial generators of the solution space of (1.6).
 
4
Note that such \(x_0\) and \(y_0\) always exist for every prime p satisfying \(p\equiv 1\)(mod 4). In fact this choice of \(x_0\) and \(y_0\) is unique.
 
5
Note the similarity of this result with the Mordell-Weil theorem for elliptic curves.
 
Literature
4.
go back to reference Knapp, A.: Elliptic Curves. Princeton University Press, Princeton, NJ (1992) Knapp, A.: Elliptic Curves. Princeton University Press, Princeton, NJ (1992)
7.
go back to reference Mazur, B.: Rational isogenies of prime degree (with an appendix by D. Goldfeld). Invent. Math. 44(2), 129–162 (1978) Mazur, B.: Rational isogenies of prime degree (with an appendix by D. Goldfeld). Invent. Math. 44(2), 129–162 (1978)
8.
go back to reference Metsänkylä, T.: Catalan’s conjecture: another old Diophantine problem solved. Bull. Am. Math. Soc. 41, 43–57 (2003)MathSciNetCrossRef Metsänkylä, T.: Catalan’s conjecture: another old Diophantine problem solved. Bull. Am. Math. Soc. 41, 43–57 (2003)MathSciNetCrossRef
9.
10.
go back to reference Mihailescu, P.: Primary cyclotomic units and a proof of Catalan’s conjecture. J. Reine Angew. Math. 572, 167–195 (2004)MathSciNet Mihailescu, P.: Primary cyclotomic units and a proof of Catalan’s conjecture. J. Reine Angew. Math. 572, 167–195 (2004)MathSciNet
11.
go back to reference Miller, S.J., Takloo-Bighash, R.: An Invitation to Modern Number Theory. Princeton University Press (2006) Miller, S.J., Takloo-Bighash, R.: An Invitation to Modern Number Theory. Princeton University Press (2006)
12.
go back to reference Park, J., Poonen, B., Voight, J., Wood, M.M.: A heuristic for boundedness of ranks of elliptic curves. J. Eur. Math. Soc. (JEMS) 21(9), 2859–2903 (2019)MathSciNetCrossRef Park, J., Poonen, B., Voight, J., Wood, M.M.: A heuristic for boundedness of ranks of elliptic curves. J. Eur. Math. Soc. (JEMS) 21(9), 2859–2903 (2019)MathSciNetCrossRef
14.
go back to reference Silverman, J., Tate, J.: Rational Points on Elliptic Curves. Springer, New York (1992)CrossRef Silverman, J., Tate, J.: Rational Points on Elliptic Curves. Springer, New York (1992)CrossRef
15.
Metadata
Title
Connections of Class Numbers to the Group Structure of Generalized Pythagorean Triples
Authors
Thomas Jaklitsch
Thomas C. Martinez
Steven J. Miller
Sagnik Mukherjee
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-6911-7_3

Premium Partner