Skip to main content
Top

2018 | OriginalPaper | Chapter

Connectivity and Minimum Cut Approximation in the Broadcast Congested Clique

Authors : Tomasz Jurdziński, Krzysztof Nowicki

Published in: Structural Information and Communication Complexity

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper we present two graph algorithms in the Broadcast Congested Clique model. In this model, there are n players, which communicate in synchronous rounds. Each player represents a single node of the input graph; initially each player knows the set of edges incident to his node. In each round of communication each node can broadcast a single b–bit message to all other nodes; usually \(b \in {\mathcal {O}}(\log n)\). The goal is to compute some function of the input graph.
The first result we present is the first sub-logarithmic deterministic algorithm finding a maximal spanning forest of an n node graph in the Broadcast Congested Clique, which requires only \({\mathcal {O}}(\log n / \log \log n)\) rounds. The second result is a randomized \(1 + \epsilon \) approximation algorithm finding the minimum cut of an n node graph, which requires only \({\mathcal {O}}(\log n)\) maximal spanning forest computations. In the Broadcast Congested Clique this approach, combined with the new maximal spanning forest algorithm, yields an \({\mathcal {O}}(\log ^2 n / \log \log n)\) round algorithm. Additionally, it may be applied to different models, i.e. in the multi-pass semi-streaming model it allows to reduce required memory by \(\varTheta (\log n)\) factor, with only \({\mathcal {O}}(\log ^* n)\) passes over the data stream.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
In this paper authors present an algorithm for semi–streaming model, however the result applies to the \(\mathsf {Broadcast}\) \(\mathsf {Congested}\) \(\mathsf {Clique}\).
 
2
Note that deactivation of components of degree \(<s\) at the end of a phase does not guarantee that degrees of all components are \(\ge s\) at the beginning of the next phase. This is caused by the fact that deactivation of some components might decrease degrees of components which remain active (degrees are calculated only among active nodes).
 
3
Authors of papers [1, 2] have inconsistent way of defining space complexity, i.e. c connectivity in [1] requires \({\mathcal {O}}(c n \log ^3 n)\) ‘space’, when referenced in [2] it only requires \({\mathcal {O}}(c n \log ^2 n)\) ‘space’. Here we go with the approach from [1], which seems to count bits.
 
Literature
1.
go back to reference Ahn, K.J., Guha, S., McGregor, A.: Analyzing graph structure via linear measurements. In: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, 17–19 January 2012, pp. 459–467 (2012)CrossRef Ahn, K.J., Guha, S., McGregor, A.: Analyzing graph structure via linear measurements. In: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, 17–19 January 2012, pp. 459–467 (2012)CrossRef
2.
go back to reference Ahn, K.J., Guha, S., McGregor, A.: Graph sketches: sparsification, spanners, and subgraphs. In: PODS 2012, pp. 5–14. ACM (2012) Ahn, K.J., Guha, S., McGregor, A.: Graph sketches: sparsification, spanners, and subgraphs. In: PODS 2012, pp. 5–14. ACM (2012)
4.
go back to reference Drucker, A., Kuhn, F., Oshman, R.: On the power of the congested clique model. In: PODC 2014, pp. 367–376 (2014) Drucker, A., Kuhn, F., Oshman, R.: On the power of the congested clique model. In: PODC 2014, pp. 367–376 (2014)
5.
go back to reference Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: On graph problems in a semi-streaming model. Theor. Comput. Sci. 348(2), 207–216 (2005)MathSciNetCrossRef Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: On graph problems in a semi-streaming model. Theor. Comput. Sci. 348(2), 207–216 (2005)MathSciNetCrossRef
6.
go back to reference Ghaffari, M., Parter, M.: MST in log-star rounds of congested clique. In: Proceedings of PODC 2016 (2016) Ghaffari, M., Parter, M.: MST in log-star rounds of congested clique. In: Proceedings of PODC 2016 (2016)
7.
go back to reference Hegeman, J.W., Pandurangan, G., Pemmaraju, S.V., Sardeshmukh, V.B., Scquizzato, M.: Toward optimal bounds in the congested clique: graph connectivity and MST. In: Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing, PODC 2015, Donostia-San Sebastián, Spain, 21–23 July 2015, pp. 91–100 (2015) Hegeman, J.W., Pandurangan, G., Pemmaraju, S.V., Sardeshmukh, V.B., Scquizzato, M.: Toward optimal bounds in the congested clique: graph connectivity and MST. In: Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing, PODC 2015, Donostia-San Sebastián, Spain, 21–23 July 2015, pp. 91–100 (2015)
8.
go back to reference Jurdzinski, T., Nowicki, K.: Brief announcement: on connectivity in the broadcast congested clique. In: 31st International Symposium on Distributed Computing, DISC 2017, Vienna, Austria, 16–20 October 2017, pp. 54:1–54:4 (2017) Jurdzinski, T., Nowicki, K.: Brief announcement: on connectivity in the broadcast congested clique. In: 31st International Symposium on Distributed Computing, DISC 2017, Vienna, Austria, 16–20 October 2017, pp. 54:1–54:4 (2017)
9.
go back to reference Jurdziński, T., Nowicki, K.: MST in O(1) rounds of congested clique. In: SODA 2018, pp. 2620–2632 (2018)CrossRef Jurdziński, T., Nowicki, K.: MST in O(1) rounds of congested clique. In: SODA 2018, pp. 2620–2632 (2018)CrossRef
10.
go back to reference Karger, D.R.: Random sampling in cut, flow, and network design problems. In: ACM Symposium on Theory of Computing (STOC), pp. 648–657 (1994) Karger, D.R.: Random sampling in cut, flow, and network design problems. In: ACM Symposium on Theory of Computing (STOC), pp. 648–657 (1994)
11.
12.
go back to reference Lotker, Z., Patt-Shamir, B., Pavlov, E., Peleg, D.: Minimum-weight spanning tree construction in o(log log n) communication rounds. SIAM J. Comput. 35(1), 120–131 (2005)MathSciNetCrossRef Lotker, Z., Patt-Shamir, B., Pavlov, E., Peleg, D.: Minimum-weight spanning tree construction in o(log log n) communication rounds. SIAM J. Comput. 35(1), 120–131 (2005)MathSciNetCrossRef
13.
go back to reference Montealegre, P., Todinca, I.: Brief announcement: deterministic graph connectivity in the broadcast congested clique. In: Proceedings of PODC 2016 (2016) Montealegre, P., Todinca, I.: Brief announcement: deterministic graph connectivity in the broadcast congested clique. In: Proceedings of PODC 2016 (2016)
14.
go back to reference Nagamochi, H., Ibaraki, T.: Computing edge-connectivity in multigraphs and capacitated graphs. SIAM J. Discret. Math. 5(1), 54–66 (1992)MathSciNetCrossRef Nagamochi, H., Ibaraki, T.: Computing edge-connectivity in multigraphs and capacitated graphs. SIAM J. Discret. Math. 5(1), 54–66 (1992)MathSciNetCrossRef
15.
go back to reference Nešetřil, J., Milková, E., Nešetřilová, H.: Otakar Boruvka on minimum spanning tree problem translation of both the 1926 papers, comments, history. Discret. Math. 233(1), 3–36 (2001)MathSciNetCrossRef Nešetřil, J., Milková, E., Nešetřilová, H.: Otakar Boruvka on minimum spanning tree problem translation of both the 1926 papers, comments, history. Discret. Math. 233(1), 3–36 (2001)MathSciNetCrossRef
16.
go back to reference Nishizeki, T., Poljak, S.: Highly connected factors with a small number of edges. Preprint (1989) Nishizeki, T., Poljak, S.: Highly connected factors with a small number of edges. Preprint (1989)
Metadata
Title
Connectivity and Minimum Cut Approximation in the Broadcast Congested Clique
Authors
Tomasz Jurdziński
Krzysztof Nowicki
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-030-01325-7_28

Premium Partner