Skip to main content
Top

2014 | OriginalPaper | Chapter

Conservation Laws in Cancer Modeling

Authors : Antonio Fasano, Alessandro Bertuzzi, Carmela Sinisgalli

Published in: Mathematical Oncology 2013

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We review mathematical models of tumor growth based on conservation laws in the full system of cells and interstitial liquid. First we deal with tumor cords evolving in axisymmetric geometry, where cells motion is simply passive and compatible with the saturation condition. The model is characterized by the presence of free boundaries with constraints driving the free boundary conditions, which in our opinion are particularly important, especially in the presence of treatments. Then a tumor spheroid is considered in the framework of the so-called two-fluid scheme. In a multicellular spheroid, on the appearance of a fully degraded necrotic core, the analysis of mechanical stresses becomes necessary to determine the motion via momentum balance, requiring the specification of the constitutive law for the “cell fluid.” We have chosen a Bingham-type law that presents considerable difficulties because of the presence of a yield stress, particularly with reference to the determination of an asymptotic configuration. Finally, we report some recent PDE-based models addressing complex processes in multicomponent tumors, more oriented to clinical practice.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
Some authors adopt the extreme view point that proliferation takes place only at the tumor surface because of contact inhibition (e.g., [17]) and then migrate, driven by the surface curvature. Here we stick to the experimental observation that in the tumors we are talking about proliferation occurs in the tumor mass, whenever enough oxygen is available.
 
2
Here we neglect osmotic pressure.
 
Literature
1.
go back to reference T. Alarcón, H.M. Byrne, P.K. Maini, A cellular automaton model for tumour growth in inhomogeneous environment. J. Theor. Biol. 225, 257–274 (2003)CrossRef T. Alarcón, H.M. Byrne, P.K. Maini, A cellular automaton model for tumour growth in inhomogeneous environment. J. Theor. Biol. 225, 257–274 (2003)CrossRef
2.
go back to reference D. Ambrosi, L. Preziosi, Cell adhesion mechanisms and stress relaxation in the mechanics of tumours. Biomech. Model. MechanoBiol. 8, 397–413 (2009)CrossRef D. Ambrosi, L. Preziosi, Cell adhesion mechanisms and stress relaxation in the mechanics of tumours. Biomech. Model. MechanoBiol. 8, 397–413 (2009)CrossRef
3.
go back to reference A.R.A. Anderson, M.A.J. Chaplain, Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull. Math. Biol. 60, 857–999 (1998)CrossRefMATH A.R.A. Anderson, M.A.J. Chaplain, Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull. Math. Biol. 60, 857–999 (1998)CrossRefMATH
4.
go back to reference R.P. Araujo, D.L.S. McElwain, A history of the study of solid tumour growth: the contribution of mathematical modelling. Bull. Math. Biol. 66, 1039–1091 (2004)MathSciNetCrossRef R.P. Araujo, D.L.S. McElwain, A history of the study of solid tumour growth: the contribution of mathematical modelling. Bull. Math. Biol. 66, 1039–1091 (2004)MathSciNetCrossRef
5.
go back to reference S. Astanin, A. Tosin, Mathematical model of tumour cord growth along the source of nutrient. Math. Model. Nat. Phenom. 2, 153–177 (2007)MathSciNetCrossRef S. Astanin, A. Tosin, Mathematical model of tumour cord growth along the source of nutrient. Math. Model. Nat. Phenom. 2, 153–177 (2007)MathSciNetCrossRef
6.
go back to reference I.V. Basov, V.V. Shelukhin, Generalized solutions to the equations of compressible Bingham flows. Z. Angew. Math. Mech. 79, 185–192 (1999)MathSciNetCrossRefMATH I.V. Basov, V.V. Shelukhin, Generalized solutions to the equations of compressible Bingham flows. Z. Angew. Math. Mech. 79, 185–192 (1999)MathSciNetCrossRefMATH
7.
go back to reference N. Bellomo, N.K. Li, P.K. Maini, On the foundations of cancer modelling: selected topics, speculations, and perspectives. Math. Mod. Meth. Appl. Sci. 18, 593–646 (2008)MathSciNetCrossRefMATH N. Bellomo, N.K. Li, P.K. Maini, On the foundations of cancer modelling: selected topics, speculations, and perspectives. Math. Mod. Meth. Appl. Sci. 18, 593–646 (2008)MathSciNetCrossRefMATH
8.
go back to reference A. Bertuzzi, A. d’Onofrio, A. Fasano, A. Gandolfi, Regression and regrowth of tumour cords following single-dose anticancer treatment. Bull. Math. Biol. 65, 903–931 (2003) A. Bertuzzi, A. d’Onofrio, A. Fasano, A. Gandolfi, Regression and regrowth of tumour cords following single-dose anticancer treatment. Bull. Math. Biol. 65, 903–931 (2003)
9.
go back to reference A. Bertuzzi, A. Fasano, A. Gandolfi, A free boundary problem with unilateral constraints describing the evolution of a tumour cord under the influence of cell killing agents. SIAM J. Math. Anal. 36, 882–915 (2004)MathSciNetCrossRefMATH A. Bertuzzi, A. Fasano, A. Gandolfi, A free boundary problem with unilateral constraints describing the evolution of a tumour cord under the influence of cell killing agents. SIAM J. Math. Anal. 36, 882–915 (2004)MathSciNetCrossRefMATH
10.
go back to reference A. Bertuzzi, A. Fasano, A. Gandolfi, A mathematical model for tumor cords incorporating the flow of interstitial fluid. Math. Mod. Meth. Appl. Sci. 15, 1735–1777 (2005)MathSciNetCrossRefMATH A. Bertuzzi, A. Fasano, A. Gandolfi, A mathematical model for tumor cords incorporating the flow of interstitial fluid. Math. Mod. Meth. Appl. Sci. 15, 1735–1777 (2005)MathSciNetCrossRefMATH
11.
go back to reference A. Bertuzzi, A. Fasano, L. Filidoro, A. Gandolfi, C. Sinisgalli, Dynamics of tumour cords following changes in oxygen availability: a model including a delayed exit from quiescence. Math. Comput. Model. 41, 1119–1135 (2005)MathSciNetCrossRefMATH A. Bertuzzi, A. Fasano, L. Filidoro, A. Gandolfi, C. Sinisgalli, Dynamics of tumour cords following changes in oxygen availability: a model including a delayed exit from quiescence. Math. Comput. Model. 41, 1119–1135 (2005)MathSciNetCrossRefMATH
12.
go back to reference A. Bertuzzi, A. Fasano, A. Gandolfi, C. Sinisgalli, Interstitial pressure and extracellular fluid motion in tumour cords. Math. Biosci. Eng. 2, 445–460 (2005)MathSciNetCrossRefMATH A. Bertuzzi, A. Fasano, A. Gandolfi, C. Sinisgalli, Interstitial pressure and extracellular fluid motion in tumour cords. Math. Biosci. Eng. 2, 445–460 (2005)MathSciNetCrossRefMATH
13.
go back to reference A. Bertuzzi, A. Fasano, A. Gandolfi, C. Sinisgalli, Cell resensitization after delivery of a cycle-specific anticancer drug and effect of dose splitting: learning from tumour cords. J. Theor. Biol. 244, 388–399 (2007)MathSciNetCrossRef A. Bertuzzi, A. Fasano, A. Gandolfi, C. Sinisgalli, Cell resensitization after delivery of a cycle-specific anticancer drug and effect of dose splitting: learning from tumour cords. J. Theor. Biol. 244, 388–399 (2007)MathSciNetCrossRef
14.
go back to reference A. Bertuzzi, A. Fasano, A. Gandolfi, C. Sinisgalli, Reoxygenation and split-dose response to radiation in a tumour model with Krogh-type vascular geometry. Bull. Math. Biol. 70, 992–1012 (2008)MathSciNetCrossRefMATH A. Bertuzzi, A. Fasano, A. Gandolfi, C. Sinisgalli, Reoxygenation and split-dose response to radiation in a tumour model with Krogh-type vascular geometry. Bull. Math. Biol. 70, 992–1012 (2008)MathSciNetCrossRefMATH
15.
go back to reference A. Bertuzzi, A. Fasano, A. Gandolfi, C. Sinisgalli, Modelling the evolution of a tumoural multicellular spheroid as a two-fluid Bingham-like system. Math. Mod. Meth. Appl. Sci. 23, 2561–2602 (2013)MathSciNetCrossRefMATH A. Bertuzzi, A. Fasano, A. Gandolfi, C. Sinisgalli, Modelling the evolution of a tumoural multicellular spheroid as a two-fluid Bingham-like system. Math. Mod. Meth. Appl. Sci. 23, 2561–2602 (2013)MathSciNetCrossRefMATH
16.
go back to reference A. Bertuzzi, C. Bruni, F. Papa, C. Sinisgalli, Optimal solution for a cancer radiotherapy problem. J. Math. Biol. 66, 311–349 (2013)MathSciNetCrossRefMATH A. Bertuzzi, C. Bruni, F. Papa, C. Sinisgalli, Optimal solution for a cancer radiotherapy problem. J. Math. Biol. 66, 311–349 (2013)MathSciNetCrossRefMATH
17.
go back to reference A. Brú, S. Albertos, J.L. Subiza, J. López García-Asenjo, I. Brú, The universal dynamics of tumor growth. Biophys. J. 85, 2948–2961 (2003)CrossRef A. Brú, S. Albertos, J.L. Subiza, J. López García-Asenjo, I. Brú, The universal dynamics of tumor growth. Biophys. J. 85, 2948–2961 (2003)CrossRef
18.
go back to reference H.M. Byrne, J.R. King, D.L.S. McElwain, L. Preziosi, A two-phase model of solid tumour growth. Appl. Math. Lett. 16, 567–573 (2003)MathSciNetCrossRefMATH H.M. Byrne, J.R. King, D.L.S. McElwain, L. Preziosi, A two-phase model of solid tumour growth. Appl. Math. Lett. 16, 567–573 (2003)MathSciNetCrossRefMATH
19.
go back to reference H.M. Byrne, L. Preziosi, Modelling solid tumour growth using the theory of mixtures. Math. Med. Biol. 20, 341–366 (2003)CrossRefMATH H.M. Byrne, L. Preziosi, Modelling solid tumour growth using the theory of mixtures. Math. Med. Biol. 20, 341–366 (2003)CrossRefMATH
20.
go back to reference M.A. Chaplain, S.R. McDougall, A.R. Anderson, Mathematical modeling of tumor-induced angiogenesis. Annu. Rev. Biomed. Eng. 8, 233–257 (2006)CrossRef M.A. Chaplain, S.R. McDougall, A.R. Anderson, Mathematical modeling of tumor-induced angiogenesis. Annu. Rev. Biomed. Eng. 8, 233–257 (2006)CrossRef
21.
go back to reference D. Chen, J.M. Roda, C.B. Marsh, T.D. Eubank, A. Friedman, Hypoxia inducible factors-mediated inhibition of cancer by GM-CSF: a mathematical model. Bull. Math. Biol. 74, 2752–2777 (2012)MathSciNetCrossRefMATH D. Chen, J.M. Roda, C.B. Marsh, T.D. Eubank, A. Friedman, Hypoxia inducible factors-mediated inhibition of cancer by GM-CSF: a mathematical model. Bull. Math. Biol. 74, 2752–2777 (2012)MathSciNetCrossRefMATH
22.
go back to reference A. d’Onofrio, A. Gandolfi, Chemotherapy of vascularised tumours: role of vessel density and the effect of vascular “pruning”. J. Theor. Biol. 264, 253–265 (2010) A. d’Onofrio, A. Gandolfi, Chemotherapy of vascularised tumours: role of vessel density and the effect of vascular “pruning”. J. Theor. Biol. 264, 253–265 (2010)
23.
go back to reference T. Eubank, R.D. Roberts, M. Khan, J. Curry, G.J. Nuovo, P. Kuppusamyl, C. Marsh, Granulocyte macrophage Colony-Stimulating factor inhibits breast cancer growth and metastasis by invoking an anti-angiogenic program in tumor-educated macrophages. Cancer Res. 69, 2133–2140 (2009)CrossRef T. Eubank, R.D. Roberts, M. Khan, J. Curry, G.J. Nuovo, P. Kuppusamyl, C. Marsh, Granulocyte macrophage Colony-Stimulating factor inhibits breast cancer growth and metastasis by invoking an anti-angiogenic program in tumor-educated macrophages. Cancer Res. 69, 2133–2140 (2009)CrossRef
24.
go back to reference A. Fasano, Glucose metabolism in multicellular spheroids, ATP production and effects of acidity, in New Challenges for Cancer Systems Biomedicine, ed. by A. d’Onofrio, Z. Agur, P. Cerrai, A. Gandolfi (Springer, to appear) A. Fasano, Glucose metabolism in multicellular spheroids, ATP production and effects of acidity, in New Challenges for Cancer Systems Biomedicine, ed. by A. d’Onofrio, Z. Agur, P. Cerrai, A. Gandolfi (Springer, to appear)
25.
go back to reference A. Fasano, A. Gandolfi, The steady state of multicellular tumour spheroids: a modelling challenge, in Mathematical Methods and Models in Biomedicine, ed. by U. Ledzewicz, H. Schaettler, A. Friedman, E. Kashdan (Springer, New York, 2012), pp. 161–179 A. Fasano, A. Gandolfi, The steady state of multicellular tumour spheroids: a modelling challenge, in Mathematical Methods and Models in Biomedicine, ed. by U. Ledzewicz, H. Schaettler, A. Friedman, E. Kashdan (Springer, New York, 2012), pp. 161–179
26.
go back to reference A. Fasano, A. Bertuzzi, A. Gandolfi, Mathematical modelling of tumour growth and treatment. In: Complex Systems in Biomedicine, ed. by A. Quarteroni, L. Formaggia, A. Veneziani (Springer, Italia, Milano, 2006), pp. 71–108CrossRef A. Fasano, A. Bertuzzi, A. Gandolfi, Mathematical modelling of tumour growth and treatment. In: Complex Systems in Biomedicine, ed. by A. Quarteroni, L. Formaggia, A. Veneziani (Springer, Italia, Milano, 2006), pp. 71–108CrossRef
27.
go back to reference A. Fasano, M.A. Herrero, M. Rocha Rodrigo, Slow and fast invasion waves in a model of acid-mediated tumour growth. Math. Biosci. 220, 45–56 (2009)MathSciNetCrossRefMATH A. Fasano, M.A. Herrero, M. Rocha Rodrigo, Slow and fast invasion waves in a model of acid-mediated tumour growth. Math. Biosci. 220, 45–56 (2009)MathSciNetCrossRefMATH
28.
go back to reference A. Fasano, M. Gabrielli, A. Gandolfi, The energy balance in stationary multicellular spheroids. Far East J. Math. Sci. 39, 105–128 (2010)MathSciNetMATH A. Fasano, M. Gabrielli, A. Gandolfi, The energy balance in stationary multicellular spheroids. Far East J. Math. Sci. 39, 105–128 (2010)MathSciNetMATH
29.
go back to reference A. Fasano, M. Gabrielli, A. Gandolfi, Investigating the steady state of multicellular spheroids by revisiting the two-fluid model. Math. Biosci. Eng. 8, 239–252 (2011)MathSciNetCrossRefMATH A. Fasano, M. Gabrielli, A. Gandolfi, Investigating the steady state of multicellular spheroids by revisiting the two-fluid model. Math. Biosci. Eng. 8, 239–252 (2011)MathSciNetCrossRefMATH
30.
go back to reference A. Fasano, M. Gabrielli, A. Gandolfi, Erratum to: investigating the steady state of multicellular spheroids by revisiting the two-fluid model. Math. Biosci. Eng. 9, 697 (2012)MathSciNetCrossRefMATH A. Fasano, M. Gabrielli, A. Gandolfi, Erratum to: investigating the steady state of multicellular spheroids by revisiting the two-fluid model. Math. Biosci. Eng. 9, 697 (2012)MathSciNetCrossRefMATH
31.
go back to reference J. Folkman, M. Hochberg, Cell-regulation of growth in three dimensions. J. Exp. Med. 138, 745–753 (1973)CrossRef J. Folkman, M. Hochberg, Cell-regulation of growth in three dimensions. J. Exp. Med. 138, 745–753 (1973)CrossRef
32.
go back to reference J. Folkman, E. Merler, C. Abernathy, G. Williams, Isolation of a tumor fraction responsible for angiogenesis. J. Exp. Med. 133, 275–288 (1971)CrossRef J. Folkman, E. Merler, C. Abernathy, G. Williams, Isolation of a tumor fraction responsible for angiogenesis. J. Exp. Med. 133, 275–288 (1971)CrossRef
33.
go back to reference J.P. Freyer, R.M. Sutherland, Regulation of growth saturation and development of necrosis in EMT6/Ro multicellular spheroids by the glucose and oxygen supply. Cancer Res. 46, 3504–3512 (1986) J.P. Freyer, R.M. Sutherland, Regulation of growth saturation and development of necrosis in EMT6/Ro multicellular spheroids by the glucose and oxygen supply. Cancer Res. 46, 3504–3512 (1986)
34.
go back to reference A. Friedman, A hierarchy of cancer models and their mathematical challenges. Discrete Contin. Dyn. Syst. B 4, 147–159 (2004)CrossRefMATH A. Friedman, A hierarchy of cancer models and their mathematical challenges. Discrete Contin. Dyn. Syst. B 4, 147–159 (2004)CrossRefMATH
35.
go back to reference R.A. Gatenby, E.T. Gawlinski, A reaction-diffusion model for cancer invasion. Cancer Res. 56, 5745–5753 (1996) R.A. Gatenby, E.T. Gawlinski, A reaction-diffusion model for cancer invasion. Cancer Res. 56, 5745–5753 (1996)
36.
go back to reference J.B. Gillen, E.A. Gaffney, N.K. Martin, P.K. Maini, A general reaction-diffusion model of acidity in cancer invasion. J. Math. Biol. (2013) J.B. Gillen, E.A. Gaffney, N.K. Martin, P.K. Maini, A general reaction-diffusion model of acidity in cancer invasion. J. Math. Biol. (2013)
37.
go back to reference S. Goel, D.G. Duda, L. Xu, L.L. Munn, Y. Boucher, D. Fukumura, R.K. Jain, Normalization of the vasculature for treatment of cancer and other diseases. Physiol. Rev. 91, 1071–1121 (2011)CrossRef S. Goel, D.G. Duda, L. Xu, L.L. Munn, Y. Boucher, D. Fukumura, R.K. Jain, Normalization of the vasculature for treatment of cancer and other diseases. Physiol. Rev. 91, 1071–1121 (2011)CrossRef
38.
go back to reference P. Greenspan, Models for the growth of a solid tumour by diffusion. Stud. Appl. Math. 51, 317–340 (1972)MATH P. Greenspan, Models for the growth of a solid tumour by diffusion. Stud. Appl. Math. 51, 317–340 (1972)MATH
39.
go back to reference P. Hahnfeldt, D. Panigrahy, J. Folkman, L. Hlatky, Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy. Cancer Res. 59, 4770–4775 (1999) P. Hahnfeldt, D. Panigrahy, J. Folkman, L. Hlatky, Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy. Cancer Res. 59, 4770–4775 (1999)
40.
go back to reference M.A. Herrero, Reaction-diffusion systems: a mathematical biology approach, in Cancer Modelling and Simulation, ed. by L. Preziosi (Chapman and Hall, Boca Raton, 2003), pp. 367–420 M.A. Herrero, Reaction-diffusion systems: a mathematical biology approach, in Cancer Modelling and Simulation, ed. by L. Preziosi (Chapman and Hall, Boca Raton, 2003), pp. 367–420
42.
go back to reference T. Hillen, H. Enderling, P. Hahnfeld, The tumor growth paradox and immune system-mediated selection for cancer stem cells. Bull. Math. Biol. 75, 161–184 (2013)MathSciNetCrossRefMATH T. Hillen, H. Enderling, P. Hahnfeld, The tumor growth paradox and immune system-mediated selection for cancer stem cells. Bull. Math. Biol. 75, 161–184 (2013)MathSciNetCrossRefMATH
43.
go back to reference P. Hinow, P. Gerlee, L.J. McCawley, V. Quaranta, M. Ciobanu, J.M. Graham, B.P. Ayati, J. Claridge, K.R. Swanson, M. Loveless, A.R.A. Anderson, A spatial model of tumor-host interaction: application of chemotherapy. Math. Biosci. Eng. 6, 521–546 (2009)MathSciNetCrossRefMATH P. Hinow, P. Gerlee, L.J. McCawley, V. Quaranta, M. Ciobanu, J.M. Graham, B.P. Ayati, J. Claridge, K.R. Swanson, M. Loveless, A.R.A. Anderson, A spatial model of tumor-host interaction: application of chemotherapy. Math. Biosci. Eng. 6, 521–546 (2009)MathSciNetCrossRefMATH
44.
go back to reference D.G. Hirst, J. Denekamp, Tumour cell proliferation in relation to the vasculature. Cell Tissue Kinet. 12, 31–42 (1979) D.G. Hirst, J. Denekamp, Tumour cell proliferation in relation to the vasculature. Cell Tissue Kinet. 12, 31–42 (1979)
45.
go back to reference A. Iordan, A. Duperray, C. Verdier, A fractal approach to the rheology of concentrated cell suspensions. Phys. Rev. E 77, 011911 (2008)CrossRef A. Iordan, A. Duperray, C. Verdier, A fractal approach to the rheology of concentrated cell suspensions. Phys. Rev. E 77, 011911 (2008)CrossRef
46.
go back to reference R.K. Jain, Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat. Med. 7, 987–989 (2001)CrossRef R.K. Jain, Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat. Med. 7, 987–989 (2001)CrossRef
47.
go back to reference H.V. Jain, A. Friedman, Modeling prostate cancer response to continuous versus intermittent androgen ablation therapy. Discrete Contin. Dyn. Syst. B 18, 945–967 (2013)MathSciNetCrossRefMATH H.V. Jain, A. Friedman, Modeling prostate cancer response to continuous versus intermittent androgen ablation therapy. Discrete Contin. Dyn. Syst. B 18, 945–967 (2013)MathSciNetCrossRefMATH
48.
go back to reference K.A. Landman, C.P. Please, Tumour dynamics and necrosis: surface tension and stability. IMA J. Math. Appl. Med. Biol. 18, 131–158 (2001)CrossRefMATH K.A. Landman, C.P. Please, Tumour dynamics and necrosis: surface tension and stability. IMA J. Math. Appl. Med. Biol. 18, 131–158 (2001)CrossRefMATH
49.
go back to reference U. Ledzewicz, M. Naghnaeian, H. Schättler, Optimal response to chemotherapy for a mathematical model of tumor-immune dynamics. J. Math. Biol. 64, 557–77 (2012)MathSciNetCrossRefMATH U. Ledzewicz, M. Naghnaeian, H. Schättler, Optimal response to chemotherapy for a mathematical model of tumor-immune dynamics. J. Math. Biol. 64, 557–77 (2012)MathSciNetCrossRefMATH
50.
go back to reference H.A. Levine, B.D. Sleeman, M. Nilsen-Hamilton, Mathematical modeling of the onset of capillary formation initiating angiogenesis. J. Math. Biol. 42, 195–238 (2001)MathSciNetCrossRefMATH H.A. Levine, B.D. Sleeman, M. Nilsen-Hamilton, Mathematical modeling of the onset of capillary formation initiating angiogenesis. J. Math. Biol. 42, 195–238 (2001)MathSciNetCrossRefMATH
51.
go back to reference J.S. Lowengrub, H.B. Frieboes, F. Jin, Y.L. Chuang, X. Li, P. Macklin, S.M. Wise, V. Cristini, Nonlinear modelling of cancer: bridging the gap between cells and tumours. Nonlinearity 23, 1–91 (2010)MathSciNetCrossRef J.S. Lowengrub, H.B. Frieboes, F. Jin, Y.L. Chuang, X. Li, P. Macklin, S.M. Wise, V. Cristini, Nonlinear modelling of cancer: bridging the gap between cells and tumours. Nonlinearity 23, 1–91 (2010)MathSciNetCrossRef
52.
go back to reference J.V. Moore, H.A. Hopkins, W.B. Looney, Dynamic histology of a rat hepatoma and the response to 5-fluorouracil. Cell Tissue Kinet. 13, 53–63 (1980) J.V. Moore, H.A. Hopkins, W.B. Looney, Dynamic histology of a rat hepatoma and the response to 5-fluorouracil. Cell Tissue Kinet. 13, 53–63 (1980)
53.
go back to reference J.V. Moore, P.S. Hasleton, C.H. Buckley, Tumour cords in 52 human bronchial and cervical squamous cell carcinomas: inferences for their cellular kinetics and radiobiology. Br. J. Cancer 51, 407–413 (1985)CrossRef J.V. Moore, P.S. Hasleton, C.H. Buckley, Tumour cords in 52 human bronchial and cervical squamous cell carcinomas: inferences for their cellular kinetics and radiobiology. Br. J. Cancer 51, 407–413 (1985)CrossRef
54.
go back to reference M. Neeman, K.A. Jarrett, L.O. Sillerud, J.P. Freyer, Self-diffusion of water in multicellular spheroids measured by magnetic resonance microimaging. Cancer Res. 51, 4072–4079 (1991) M. Neeman, K.A. Jarrett, L.O. Sillerud, J.P. Freyer, Self-diffusion of water in multicellular spheroids measured by magnetic resonance microimaging. Cancer Res. 51, 4072–4079 (1991)
55.
go back to reference P. Panorchan, M.S. Thompson, K.J. Davis, Y. Tseng, K. Konstantopoulos, D. Wirtz, Single-molecule analysis of cadherin-mediated cell–cell adhesion. J. Cell Sci. 119, 66–74 (2006)CrossRef P. Panorchan, M.S. Thompson, K.J. Davis, Y. Tseng, K. Konstantopoulos, D. Wirtz, Single-molecule analysis of cadherin-mediated cell–cell adhesion. J. Cell Sci. 119, 66–74 (2006)CrossRef
56.
go back to reference V.M. Perez-Garcia, G.F. Calvo, J. Belmonte-Beitia, D. Diego, L. Perez-Romasanta, Bright solitary waves in malignant gliomas. Phys. Rev. E 84, 1–6 (2011)CrossRef V.M. Perez-Garcia, G.F. Calvo, J. Belmonte-Beitia, D. Diego, L. Perez-Romasanta, Bright solitary waves in malignant gliomas. Phys. Rev. E 84, 1–6 (2011)CrossRef
57.
go back to reference L. Preziosi, G. Vitale, A multiphase model of tumor and tissue growth including cell adhesion and plastic reorganization. Math. Mod. Meth. Appl. Sci. 21, 1901–1932 (2011)MathSciNetCrossRefMATH L. Preziosi, G. Vitale, A multiphase model of tumor and tissue growth including cell adhesion and plastic reorganization. Math. Mod. Meth. Appl. Sci. 21, 1901–1932 (2011)MathSciNetCrossRefMATH
58.
go back to reference K.R. Rajagopal, L. Tao, Mechanics of Mixtures (World Scientific, Singapore, 1995)MATH K.R. Rajagopal, L. Tao, Mechanics of Mixtures (World Scientific, Singapore, 1995)MATH
59.
go back to reference D. Ribatti, A. Vacca, M. Presta, The discovery of angiogenic factors: a historical review. General Pharmacol. 35, 227–231 (2002)CrossRef D. Ribatti, A. Vacca, M. Presta, The discovery of angiogenic factors: a historical review. General Pharmacol. 35, 227–231 (2002)CrossRef
60.
go back to reference J.M. Roda, L.A. Summer, R. Evans, G.S. Philips, C.B. Marsh, T.D. Eubank, Hypoxia-inducible factor-2α regulates GM-CSF-derived soluble vascular endothelial growth factor receptor 1 production from macrophages and inhibits tumor growth and angiogenesis. J. Immunol. 187, 1970–1976 (2011)CrossRef J.M. Roda, L.A. Summer, R. Evans, G.S. Philips, C.B. Marsh, T.D. Eubank, Hypoxia-inducible factor-2α regulates GM-CSF-derived soluble vascular endothelial growth factor receptor 1 production from macrophages and inhibits tumor growth and angiogenesis. J. Immunol. 187, 1970–1976 (2011)CrossRef
61.
go back to reference J.M. Roda, Y. Wang, L. Sumner, G. Phillips, T.D. Eubank, C. Marsh, Stabilization of HIF-2α induces SVEGFR-1 production from Tumor-associated macrophages and enhances the Anti-tumor effects of GM-CSF in murine melanoma model. J. Immunol. 189, 3168–3177 (2012)CrossRef J.M. Roda, Y. Wang, L. Sumner, G. Phillips, T.D. Eubank, C. Marsh, Stabilization of HIF-2α induces SVEGFR-1 production from Tumor-associated macrophages and enhances the Anti-tumor effects of GM-CSF in murine melanoma model. J. Immunol. 189, 3168–3177 (2012)CrossRef
62.
go back to reference A. Stephanou, S.R. McDougall, A.R.A. Anderson, M.A.J. Chaplain, Mathematical modelling of flow in 2d and 3d vascular networks: applications to anti-angiogenic and chemotherapeutic drug strategies. Math. Comput. Model. 41, 1137–1156 (2005)MathSciNetCrossRefMATH A. Stephanou, S.R. McDougall, A.R.A. Anderson, M.A.J. Chaplain, Mathematical modelling of flow in 2d and 3d vascular networks: applications to anti-angiogenic and chemotherapeutic drug strategies. Math. Comput. Model. 41, 1137–1156 (2005)MathSciNetCrossRefMATH
63.
go back to reference K.R. Swanson, C. Bridge, J.D. Murray, E.C. Alvord Jr., Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion. J. Neurol. Sci. 216, 1–10 (2003)CrossRef K.R. Swanson, C. Bridge, J.D. Murray, E.C. Alvord Jr., Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion. J. Neurol. Sci. 216, 1–10 (2003)CrossRef
64.
go back to reference K.R. Swanson, R. Rockne, J. Claridge, M.A. Chaplain, E.C. Alvord Jr., A.R.A. Anderson, Quantifying the role of angiogenesis in malignant progression of gliomas: In silico modeling integrates imaging and histology. Cancer Res. 71, 7366–7375 (2011)CrossRef K.R. Swanson, R. Rockne, J. Claridge, M.A. Chaplain, E.C. Alvord Jr., A.R.A. Anderson, Quantifying the role of angiogenesis in malignant progression of gliomas: In silico modeling integrates imaging and histology. Cancer Res. 71, 7366–7375 (2011)CrossRef
65.
go back to reference I.F. Tannock, The relation between cell proliferation and the vascular system in a transplanted mouse mammary tumour. Br. J. Cancer 22, 258–273 (1968)CrossRef I.F. Tannock, The relation between cell proliferation and the vascular system in a transplanted mouse mammary tumour. Br. J. Cancer 22, 258–273 (1968)CrossRef
66.
go back to reference Y. Yang, L. Xing, Optimization of radiotherapy dose-time fractionation with consideration of tumor specific biology. Med. Phys. 32, 3666–3677 (2005)CrossRef Y. Yang, L. Xing, Optimization of radiotherapy dose-time fractionation with consideration of tumor specific biology. Med. Phys. 32, 3666–3677 (2005)CrossRef
Metadata
Title
Conservation Laws in Cancer Modeling
Authors
Antonio Fasano
Alessandro Bertuzzi
Carmela Sinisgalli
Copyright Year
2014
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4939-0458-7_2

Premium Partner