Skip to main content
Top

04-07-2024 | Original Paper

Constacyclic codes over \({{\mathbb {Z}}_2[u]}/{\langle u^2\rangle }\times {{\mathbb {Z}}_2[u]}/{\langle u^3\rangle }\) and the MacWilliams identities

Authors: Vidya Sagar, Ankit Yadav, Ritumoni Sarma

Published in: Applicable Algebra in Engineering, Communication and Computing

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this article, we deal with additive codes over the Frobenius ring \({\mathcal {R}}_{2}{\mathcal {R}}_{3}:=\frac{{\mathbb {Z}}_{2}[u]}{\langle u^2 \rangle }\times \frac{{\mathbb {Z}}_{2}[u]}{\langle u^3 \rangle }\). First, we study constacyclic codes over \({\mathcal {R}}_2\) and \({\mathcal {R}}_3\) and find their generator polynomials. With the help of these generator polynomials, we determine the structure of constacyclic codes over \({\mathcal {R}}_2{\mathcal {R}}_3\). We use Gray maps to show that constacyclic codes over \({\mathcal {R}}_{2}{\mathcal {R}}_{3}\) are essentially binary generalized quasi-cyclic codes. Moreover, we obtain a number of binary codes with good parameters from these \({\mathcal {R}}_{2}{\mathcal {R}}_{3}\)-constacyclic codes. Besides, several weight enumerators are computed, and the corresponding MacWilliams identities are established.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
  1. Abualrub, T., Siap, I.: Cyclic codes over the rings \(\mathbb{Z} _{2} + u\mathbb{Z}_{2}\) and \(\mathbb{Z} _{2} +u\mathbb{Z} _{2} + u^{2}\mathbb{Z} _{2}\). Des. Codes Cryptogr. 42(3), 273–287 (2007)MathSciNetView Article
  2. Abualrub, T., Siap, I., Aydin, N.: \(\mathbb{Z} _{2}\mathbb{Z} _{4}\)-additive cyclic codes. IEEE Trans. Inform. Theory 60(3), 1508–1514 (2014)MathSciNetView Article
  3. Aydogdu, I., Siap, I.: The structure of \(\mathbb{Z} _{2}\mathbb{Z} _{2^s}\)-additive codes: bounds on the minimum distance. Appl. Math. Inf. Sci. 7(6), 2271–2278 (2013)MathSciNetView Article
  4. Aydogdu, I., Abualrub, T., Siap, I.: On \(\mathbb{Z} _{2}\mathbb{Z} _{2}[u]\)-additive codes. Int. J. Comput. Math. 92(9), 1806–1814 (2015)MathSciNetView Article
  5. Aydogdu, I., Abualrub, T., Siap, I.: \(\mathbb{ Z} _{2}\mathbb{Z} _{2}[u]\)-cyclic and constacyclic codes. IEEE Trans. Inform. Theory 63(8), 4883–4893 (2017)MathSciNetView Article
  6. Aydogdu, I., Siap, I., Ten-Valls, R.: On the structure of \(\mathbb{Z} _{2}\mathbb{ Z} _{2}[u^3]\)-linear and cyclic codes. Finite Fields Appl. 48, 241–260 (2017)MathSciNetView Article
  7. Berlekamp, E.R.: Algebraic coding theory mcgraw-hill, vol 8. McGraw-Hill, New York (1968)
  8. Borges, J., Fernández-Córdoba, C., Pujol, J., Rifà, J., Villanueva, M.: \(\mathbb{ Z} _{2}\mathbb{ Z} _{4}\)-linear codes: generator matrices and duality. Des. Codes Cryptogr. 54(2), 167–179 (2010)MathSciNetView Article
  9. Borges, J., Fernández-Córdoba, C., Ten-Valls, R.: \(\mathbb{ Z} _{2}\mathbb{ Z} _{4}\)-additive cyclic codes, generator polynomials and dual codes. IEEE Trans. Inform. Theory 62(11), 6348–6354 (2016)MathSciNetView Article
  10. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system I: the user language. J. Symb. Comput. 24(3–4), 235–265 (1997)MathSciNetView Article
  11. Dougherty, S.T.: Algebraic Coding Theory Over Finite Commutative Rings, Springer Briefs in Mathematics. Springer (2017)View Article
  12. Esmaeili, M., Yari, S.: Generalized quasi-cyclic codes: structural properties and code construction. Appl. Algebra Eng. Commun. Comput. 20(2), 159–173 (2009)MathSciNetView Article
  13. Friedlander, I.: The MacWilliams Identity for Krawtchouk Association Schemes, arXiv preprint, arXiv:​2401.​07319, (2024)
  14. Grassl, M.: Bounds on the minimum distance of linear codes. http://​www.​codetables.​de
  15. Hammons, A.R., Kumar, P.V., Calderbank, A.R., Slone, N.J.A., Solé, P.: The \(\mathbb{Z} _{4}\) linearity of Kerdock, Preparata, Goethals and related codes. IEEE Trans. Inform. Theory 40(2), 301–319 (1994)MathSciNetView Article
  16. Honold, T.: Characterization of finite Frobenius rings. Arch. Math. 76(6), 406–415 (2001)MathSciNetView Article
  17. Islam, H., Prakash, O., Solé, P.: \(\mathbb{Z} _{4}\mathbb{Z} _{4}[u]\)-additive cyclic and constacyclic codes. Adv. Math. Comm. 15(4), 737–755 (2021)View Article
  18. Lidl, R., Niederreiter, H.: Introduction to Finite Fields and their Applications, 2nd edn. Cambridge University Press (1994)View Article
  19. MacWilliams, F.J.: Combinatorial problems of elementary group theory, Ph.D. thesis, Harvard University, (1961)
  20. MacWilliams, F.J.: A theorem on the distribution of weights in a systematic code. Bell Syst. Tech. J. 42(1), 79–94 (1963)MathSciNetView Article
  21. MacWilliams, F.J., Slone, N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977)
  22. Prange, E.: Cyclic error-correcting codes in two symbols, Air force Cambridge research center, (1957)
  23. Rifà, J., Pujol, J.: Translation-invariant propelinear codes. IEEE Trans. Inform. Theory 43(2), 590–598 (1997)MathSciNetView Article
  24. Rifà-Pous, H., Rifà, J., Ronquillo, L.: \(\mathbb{Z} _{2}\mathbb{Z} _{4}\)-additive perfect codes in steganography. Adv. Math. Comm. 5(3), 425–433 (2011)View Article
  25. Shi, M., Alahmadi, A., Solé, P.: Codes and Rings: Theory and Practice. Academic Press (2017)
  26. Shiromoto, K.: A basic exact sequence for the Lee and Euclidean weights of linear codes over \(\mathbb{Z} _{l}\). Linear Algebra Appl. 295(1–3), 191–200 (1999)MathSciNetView Article
  27. Tang, Y., Zhu, S., Kai, X.: MacWilliams type identities on the Lee and Euclidean weights for linear codes over \(\mathbb{Z} _{l}\). Linear Algebra Appl. 516, 82–92 (2017)MathSciNetView Article
  28. Wang, J., Wei, Y., Sun, Z., Fu, F.W.: MacWilliams-like identities for certain vectorial bent functions, In: 2023 IEEE International Symposium on Information Theory (ISIT), pp. 1402–1407 (2023)
  29. Wood, J.A.: Duality for modules over finite rings and applications to coding theory. Am. J. Math. 121, 555–575 (1999)MathSciNetView Article
  30. Yildiz, B., Karadeniz, S.: Linear codes over \(\mathbb{Z} _{4} + u\mathbb{Z} _{4}\): MacWilliams identities, projections, and formally self-dual codes. Finite Fields Appl. 27, 24–40 (2014)MathSciNetView Article
Metadata
Title
Constacyclic codes over and the MacWilliams identities
Authors
Vidya Sagar
Ankit Yadav
Ritumoni Sarma
Publication date
04-07-2024
Publisher
Springer Berlin Heidelberg
Published in
Applicable Algebra in Engineering, Communication and Computing
Print ISSN: 0938-1279
Electronic ISSN: 1432-0622
DOI
https://doi.org/10.1007/s00200-024-00662-6

Premium Partner