Skip to main content
Top

2025 | OriginalPaper | Chapter

Constructing and Processing 3D Face Structures Using Structure of Motion Without Complex Instruments

Authors : Harshit Mittal, Trilochan Singh Rathore, Neeraj Garg

Published in: Innovative Computing and Communications

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the world of biometric authentication, 3D face recognition stands as a pivotal era. That’s why, this paper presents a groundbreaking method for building and processing 3D face structures that may later be used for superior and multidimensional face recognition. The method obviated the need for complicated scanners and heavy-powered graphic processing gadgets. The proposed approach uses a gaggle of 2D RGB images extracted from half of a minute video covering the frontal half of the face from one ear to another. Further, it uses the concept of structure from motion and photogrammetry, which enable the extraction of facial features in the form of point clouds. These extracted face structures are then processed, the usage of the iterative closest point method for shape aligning coupled with density-based spatial clustering of applications with noise for getting rid of noisy factors. This research not only signifies a significant leap in the domain of 3D face recognition but also has far-achieving implications. The ramifications of these structures enlarge past mere technological innovation, and it engenders realistic integration opportunities in ordinary eventualities, ranging from mobile devices to surveillance cameras. Consequently, the research contributes to organizing a more secure and extra secure digital panorama, improving the resilience of authentication systems and reinforcing the rules of virtual agreement.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Chen, Y., Zhou, L., Pei, S., Yu, Z., Chen, Y., Liu, X., & Xiong, N. (2019). KNN-BLOCK DBSCAN: Fast clustering for large-scale data. IEEE Transactions on Systems, Man, and Cybernetics: Systems,51(6), 3939–3953. Chen, Y., Zhou, L., Pei, S., Yu, Z., Chen, Y., Liu, X., & Xiong, N. (2019). KNN-BLOCK DBSCAN: Fast clustering for large-scale data. IEEE Transactions on Systems, Man, and Cybernetics: Systems,51(6), 3939–3953.
2.
go back to reference Chen, Y., Zhou, L., Bouguila, N., Wang, C., Chen, Y., & Du, J. (2021). BLOCK-DBSCAN: Fast clustering for large scale data. Pattern Recognition, 109, 107624.CrossRef Chen, Y., Zhou, L., Bouguila, N., Wang, C., Chen, Y., & Du, J. (2021). BLOCK-DBSCAN: Fast clustering for large scale data. Pattern Recognition, 109, 107624.CrossRef
3.
go back to reference Griwodz, C., Gasparini, S., Calvet, L., Gurdjos, P., Castan, F., Maujean, B., De Lillo, G., & Lanthony, Y. (2021, June). AliceVision Meshroom: An open-source 3D reconstruction pipeline. In Proceedings of the 12th ACM multimedia systems conference (pp. 241–247). Griwodz, C., Gasparini, S., Calvet, L., Gurdjos, P., Castan, F., Maujean, B., De Lillo, G., & Lanthony, Y. (2021, June). AliceVision Meshroom: An open-source 3D reconstruction pipeline. In Proceedings of the 12th ACM multimedia systems conference (pp. 241–247).
4.
go back to reference Guo, Y., Wang, H., Wang, L., Lei, Y., Liu, L., & Bennamoun, M. (2023). 3D face recognition: Two decades of progress and prospects. ACM Computing Surveys. Guo, Y., Wang, H., Wang, L., Lei, Y., Liu, L., & Bennamoun, M. (2023). 3D face recognition: Two decades of progress and prospects. ACM Computing Surveys.
5.
go back to reference Iglhaut, J., Cabo, C., Puliti, S., Piermattei, L., O’Connor, J., & Rosette, J. (2019). Structure from motion photogrammetry in forestry: A review. Current Forestry Reports, 5, 155–168.CrossRef Iglhaut, J., Cabo, C., Puliti, S., Piermattei, L., O’Connor, J., & Rosette, J. (2019). Structure from motion photogrammetry in forestry: A review. Current Forestry Reports, 5, 155–168.CrossRef
6.
go back to reference Jing, Y., Lu, X., & Gao, S. (2023). 3D face recognition: A comprehensive survey in 2022. Computational Visual Media, 1–29. Jing, Y., Lu, X., & Gao, S. (2023). 3D face recognition: A comprehensive survey in 2022. Computational Visual Media, 1–29.
7.
go back to reference Lindenberger, P., Sarlin, P. E., Larsson, V., & Pollefeys, M. (2021). Pixel-perfect structure-from-motion with feature metric refinement. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 5987–5997). Lindenberger, P., Sarlin, P. E., Larsson, V., & Pollefeys, M. (2021). Pixel-perfect structure-from-motion with feature metric refinement. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 5987–5997).
8.
go back to reference Mittal, H., & Garg, N. (2023). Recognizing/detecting human faces in images: Survey. Available at SSRN 4345630. Mittal, H., & Garg, N. (2023). Recognizing/detecting human faces in images: Survey. Available at SSRN 4345630.
9.
go back to reference Mittal, H. (2023). Evaluating the performance of feature extraction techniques using classification techniques. Computer Science & Information Technology (CS & IT), 13(14), 19–20. Mittal, H. (2023). Evaluating the performance of feature extraction techniques using classification techniques. Computer Science & Information Technology (CS & IT), 13(14), 19–20.
10.
go back to reference Shi, X., Liu, T., & Han, X. (2020). Improved Iterative Closest Point (ICP) 3D point cloud registration algorithm based on point cloud filtering and adaptive fireworks for coarse registration. International Journal of Remote Sensing, 41(8), 3197–3220.CrossRef Shi, X., Liu, T., & Han, X. (2020). Improved Iterative Closest Point (ICP) 3D point cloud registration algorithm based on point cloud filtering and adaptive fireworks for coarse registration. International Journal of Remote Sensing, 41(8), 3197–3220.CrossRef
11.
go back to reference Starczewski, A., Goetzen, P., & Er, M. J. (2020). A new method for automatic determining of the DBSCAN parameters. Journal of Artificial Intelligence and Soft Computing Research, 10(3), 209–221.CrossRef Starczewski, A., Goetzen, P., & Er, M. J. (2020). A new method for automatic determining of the DBSCAN parameters. Journal of Artificial Intelligence and Soft Computing Research, 10(3), 209–221.CrossRef
12.
go back to reference Zhang, J., Yao, Y., & Deng, B. (2021). Fast and robust iterative closest point. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(7), 3450–3466. Zhang, J., Yao, Y., & Deng, B. (2021). Fast and robust iterative closest point. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(7), 3450–3466.
Metadata
Title
Constructing and Processing 3D Face Structures Using Structure of Motion Without Complex Instruments
Authors
Harshit Mittal
Trilochan Singh Rathore
Neeraj Garg
Copyright Year
2025
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-4152-6_23