Skip to main content
Top
Published in:

2021 | OriginalPaper | Chapter

Constructing Knowledge Graph for Prognostics and Health Management of On-board Train Control System Based on Big Data and XGBoost

Authors : Jiang Liu, Bai-gen Cai, Zhong-bin Guo, Xiao-lin Zhao

Published in: Big Data Technologies and Applications

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Train control system plays a significant role in safe and efficient operation of the railway transport system. In order to enhance the system capability and cost efficiency from a full life cycle perspective, the establishment of a Condition-based Maintenance (CBM) scheme will be beneficial to both the currently in use and next generation train control systems. Due to the complexity of the fault mechanism of on-board train control system, a data-driven method is of great necessity to enable the Prognostics and Health Management (PHM) for the equipments in field operation. In this paper, we propose a big data platform to realize the storage, management and processing of historical field data from on-board train control equipments. Specifically, we focus on constructing the Knowledge Graph (KG) of typical faults. The Extreme Gradient Boosting (XGBoost) method is adopted to build big-data-enabled training models, which reveal the distribution of the feature importance and quantitatively evaluate the fault correlation of all related features. The presented scheme is demonstrated by a big data platform with incremental field data sets from railway operation process. Case study results show that this scheme can derive knowledge graph of specific system fault and reveal the relevance of features effectively.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Saki, M., Abolhasan, M., Lipman, J.: A novel approach for big data classification and transportation in rail networks. IEEE Trans. Intell. Transp. Syst. 21(3), 1239–1249 (2020)CrossRef Saki, M., Abolhasan, M., Lipman, J.: A novel approach for big data classification and transportation in rail networks. IEEE Trans. Intell. Transp. Syst. 21(3), 1239–1249 (2020)CrossRef
2.
go back to reference Oneto, L., et al.: Train delay prediction systems: a big data analytics perspective. Big Data Res. 11, 54–64 (2018)CrossRef Oneto, L., et al.: Train delay prediction systems: a big data analytics perspective. Big Data Res. 11, 54–64 (2018)CrossRef
3.
go back to reference Ghofrani, F., He, Q., Goverde, R., Liu, X.: Recent applications of big data analytics in railway transportation systems: a survey. Transp. Res. Part C: Emerg. Technol. 90, 226–246 (2018)CrossRef Ghofrani, F., He, Q., Goverde, R., Liu, X.: Recent applications of big data analytics in railway transportation systems: a survey. Transp. Res. Part C: Emerg. Technol. 90, 226–246 (2018)CrossRef
4.
go back to reference Gulijk, C., Hughes, P., Figueres-Esteban, M.: Big data risk analysis for rail safety. In: Proceedings of 25th European Safety and Reliability Conference, Zurich, Netherlands, pp. 1–8 (2015) Gulijk, C., Hughes, P., Figueres-Esteban, M.: Big data risk analysis for rail safety. In: Proceedings of 25th European Safety and Reliability Conference, Zurich, Netherlands, pp. 1–8 (2015)
5.
go back to reference Jiang, Z., Hsu, C., Zhang, D., Zou, X.: Evaluating rail transit timetable using big passengers’ data. J. Comput. Syst. Sci. 82, 144–155 (2016)MathSciNetCrossRef Jiang, Z., Hsu, C., Zhang, D., Zou, X.: Evaluating rail transit timetable using big passengers’ data. J. Comput. Syst. Sci. 82, 144–155 (2016)MathSciNetCrossRef
6.
go back to reference Fink, O., Wang, Q., Svensen, M., Dersin, P., Lee, W., Ducoffe, M.: Potential, challenges and future directions for deep learning in prognostics and health management applications. Eng. Appl. Artif. Intell. 92, 1–15 (2020)CrossRef Fink, O., Wang, Q., Svensen, M., Dersin, P., Lee, W., Ducoffe, M.: Potential, challenges and future directions for deep learning in prognostics and health management applications. Eng. Appl. Artif. Intell. 92, 1–15 (2020)CrossRef
7.
go back to reference Chi, Z., Lin, J., Chen, R., Huang, S.: Data-driven approach to study the polygonization of high-speed railway train wheel-sets using field data of China’s HSR train. Measurement 149, 1–12 (2020)CrossRef Chi, Z., Lin, J., Chen, R., Huang, S.: Data-driven approach to study the polygonization of high-speed railway train wheel-sets using field data of China’s HSR train. Measurement 149, 1–12 (2020)CrossRef
8.
go back to reference Shahabinejad, M., Khabbazian, M., Ardakani, M.: An efficient binary locally repairable code for hadoop distributed file system. IEEE Commun. Lett. 18(8), 1287–1290 (2014)CrossRef Shahabinejad, M., Khabbazian, M., Ardakani, M.: An efficient binary locally repairable code for hadoop distributed file system. IEEE Commun. Lett. 18(8), 1287–1290 (2014)CrossRef
9.
go back to reference Bui, D., Hussain, S., Huh, E., Lee, S.: Adaptive replication management in HDFS based on supervised learning. IEEE Trans. Knowl. Data Eng. 28(6), 1369–1382 (2016)CrossRef Bui, D., Hussain, S., Huh, E., Lee, S.: Adaptive replication management in HDFS based on supervised learning. IEEE Trans. Knowl. Data Eng. 28(6), 1369–1382 (2016)CrossRef
10.
go back to reference Yan, H., Yang, J., Wan, J.: KnowIME: a system to construct a knowledge graph for intelligent manufacturing equipment. IEEE Access 8, 41805–41813 (2020)CrossRef Yan, H., Yang, J., Wan, J.: KnowIME: a system to construct a knowledge graph for intelligent manufacturing equipment. IEEE Access 8, 41805–41813 (2020)CrossRef
11.
go back to reference Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, USA, pp. 785–794 (2016) Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, USA, pp. 785–794 (2016)
12.
go back to reference Song, K., Yan, F., Ding, T., Gao, L., Lu, S.: A steel property optimization model based on the XGBoost algorithm and improved PSO. Comput. Mater. Sci. 174, 1–13 (2020)CrossRef Song, K., Yan, F., Ding, T., Gao, L., Lu, S.: A steel property optimization model based on the XGBoost algorithm and improved PSO. Comput. Mater. Sci. 174, 1–13 (2020)CrossRef
13.
go back to reference Chen, W., Fu, K., Zuo, J., Zheng, X., Ren, W.: Radar emitter classification for large data set based on weighted-XGBoost. IET Radar Sonar Navig. 11(8), 1203–1207 (2017)CrossRef Chen, W., Fu, K., Zuo, J., Zheng, X., Ren, W.: Radar emitter classification for large data set based on weighted-XGBoost. IET Radar Sonar Navig. 11(8), 1203–1207 (2017)CrossRef
14.
go back to reference Georganos, S., Grippa, T., Vanhuysse, S., Lennert, M., Shimoni, M., Wolff, E.: Very high resolution object-based land use-land cover urban classification using extreme gradient boosting. IEEE Geosci. Remote Sens. Lett. 15(4), 607–611 (2018)CrossRef Georganos, S., Grippa, T., Vanhuysse, S., Lennert, M., Shimoni, M., Wolff, E.: Very high resolution object-based land use-land cover urban classification using extreme gradient boosting. IEEE Geosci. Remote Sens. Lett. 15(4), 607–611 (2018)CrossRef
15.
go back to reference Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: a statistical view of boosting. Ann. Stat. 28(2), 337–407 (2000)MathSciNetCrossRef Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: a statistical view of boosting. Ann. Stat. 28(2), 337–407 (2000)MathSciNetCrossRef
Metadata
Title
Constructing Knowledge Graph for Prognostics and Health Management of On-board Train Control System Based on Big Data and XGBoost
Authors
Jiang Liu
Bai-gen Cai
Zhong-bin Guo
Xiao-lin Zhao
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-72802-1_1

Premium Partner