Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

23-07-2020 | Issue 8/2020

Wireless Networks 8/2020

Construction of an indoor radio environment map using gradient boosting decision tree

Journal:
Wireless Networks > Issue 8/2020
Authors:
Syahidah Izza Rufaida, Jenq-Shiou Leu, Kuan-Wu Su, Azril Haniz, Jun-Ichi Takada
Important notes

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1007/​s11276-020-02428-7) contains supplementary material, which is available to authorized users.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Radio environment maps represent a signal strength map or a coverage area of radio networks. Constructing such maps involves gathering signal coverage information in sparse locations, which can be conventionally performed by measurement methods such as the manual drive test. Nevertheless, as this process is large-scale, time-consuming, and costly, several methods for minimization of drive tests have been introduced. Machine learning is commonly used in solving regression or classification problems; in several studies, its performance even surpassed human abilities. In this study, we applied the gradient boosting algorithm to construct radio environment maps from sparse data gathered by user equipments. XGBoost and light gradient boosting machine were experimentally evaluated in constructing base station coverage, reference signal received power, reference signal received quality, and signal-to-noise ratio heatmaps, under various configuration settings. Results validated the superior performance of the two approaches against existing baseline methods k-nearest neighbor and support vector machine. Furthermore, we also assessed our model’s ability to construct radio environment maps based on unseen configuration settings, which confirmed reliable results even if they were trained using completely different sets of configuration settings.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Supplementary Material
Available only for authorised users
Literature
About this article

Other articles of this Issue 8/2020

Wireless Networks 8/2020 Go to the issue