Skip to main content
Top
Published in: Health and Technology 3/2020

05-12-2019 | Original Paper

Construction of gender-specific regression models for aortic length estimation based on computed tomography images

Authors: Galina Zemtsovskaja, Kristjan Pilt, Andrei Samarin, Jelena Abina, Kalju Meigas, Margus Viigimaa

Published in: Health and Technology | Issue 3/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The current study aimed to construct gender-specific regression models of aortic length using anthropometric and demographic parameters available in a routine clinical setting. In addition, our goal was to assess whether these models provide more accurate estimation of aortic length than the jugulum to symphysis distance and the male-specific regression models from a previous study by Rezai et al. Gender-specific regression models of aortic length were constructed using stepwise multiple regression analysis. The actual aortic length measured from the computed tomography images of 44 subjects (19 males, 25 females) was used as a dependent variable, with age, height, weight, body mass index and jugulum to symphysis distance as independent variables. The gender-specific models with maximal adjusted R-squared values (aR2), where variables without a significant impact on the aortic length values were removed by backward approach, were selected by stepwise multiple regression analysis and validated using leave-one-out cross-validation. The accuracy of the models was assessed by root mean square error (RMSE). The constructed male-specific regression model based on age, height and BMI explains 50% of the variance in aortic length values (aR2 = 0.4957), and the female-specific model based on jugulum to symphysis distance and BMI covered 43% (aR2 = 0.4303). The constructed models showed the lowest RMSE comparing with other assessed methods. RMSE for our male-specific model, jugulum to symphysis distance and two models by Rezai et al. were 2.97 cm, 4.58 cm, 4.58 cm, and 3.85 cm, respectively. RMSE for our female-specific model and for jugulum to symphysis distance were 2.41 cm and 4.22 cm, respectively. More accurate aortic length estimation ensures an improvement in the accuracy of pulse wave velocity measurement, which is especially important in cardiovascular risk assessment.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Wilkinson IB, Fuchs SA, Jansen IM, Spratt JC, Murray GD, Cockcroft JR, et al. Reproducibility of pulse wave velocity and augmentation index measured by pulse wave analysis. J Hypertens. 1998;16:2079–84.CrossRef Wilkinson IB, Fuchs SA, Jansen IM, Spratt JC, Murray GD, Cockcroft JR, et al. Reproducibility of pulse wave velocity and augmentation index measured by pulse wave analysis. J Hypertens. 1998;16:2079–84.CrossRef
3.
go back to reference Baulmann J, Schillings U, Rickert S, Uen S, Düsing R, Illyes M, et al. A new oscillometric method for assessment of arterial stiffness: comparison with tonometric and piezo-electronic methods. J Hypertens. 2008;26:523–8.CrossRef Baulmann J, Schillings U, Rickert S, Uen S, Düsing R, Illyes M, et al. A new oscillometric method for assessment of arterial stiffness: comparison with tonometric and piezo-electronic methods. J Hypertens. 2008;26:523–8.CrossRef
4.
go back to reference Joly L, Perret-Guillaume C, Kearney-Schwartz A, Salvi P, Mandry D, Pierre-Yves M, et al. Pulse wave velocity assessment by external noninvasive devices and phase-contrast magnetic resonance imaging in the obese. Hypertension. 2009;54:421–6.CrossRef Joly L, Perret-Guillaume C, Kearney-Schwartz A, Salvi P, Mandry D, Pierre-Yves M, et al. Pulse wave velocity assessment by external noninvasive devices and phase-contrast magnetic resonance imaging in the obese. Hypertension. 2009;54:421–6.CrossRef
5.
go back to reference Bossuyt J, Van De Velde S, Azermai M, Vermeersch SJ, De Backer T, Devos DG, et al. Noninvasive assessment of carotid-femoral pulse wave velocity: the influence of body side and body contours. J Hypertens. 2013;31:946–51.CrossRef Bossuyt J, Van De Velde S, Azermai M, Vermeersch SJ, De Backer T, Devos DG, et al. Noninvasive assessment of carotid-femoral pulse wave velocity: the influence of body side and body contours. J Hypertens. 2013;31:946–51.CrossRef
6.
go back to reference Van Bortel LM, Duprez D, Starmans-Kool MJ, Safar ME, Giannattasio C, Cockcroft J, et al. Clinical applications of arterial stiffness, task force III: recommendations for user procedures. Am J Hypertens. 2002;15:445–52.CrossRef Van Bortel LM, Duprez D, Starmans-Kool MJ, Safar ME, Giannattasio C, Cockcroft J, et al. Clinical applications of arterial stiffness, task force III: recommendations for user procedures. Am J Hypertens. 2002;15:445–52.CrossRef
7.
go back to reference Cavalcante JL, Lima JAC, Redheuil A, Al-Mallah MH. Aortic stiffness: current understanding and future directions. J Am Coll Cardiol. 2011;57:1511–22.CrossRef Cavalcante JL, Lima JAC, Redheuil A, Al-Mallah MH. Aortic stiffness: current understanding and future directions. J Am Coll Cardiol. 2011;57:1511–22.CrossRef
8.
go back to reference Krüger T, Forkavets O, Veseli K, Lausberg H, Vöhringer L, Schneider W, et al. Ascending aortic elongation and the risk of dissection. Eur J Cardiothorac Surg. 2016;50:241–7.CrossRef Krüger T, Forkavets O, Veseli K, Lausberg H, Vöhringer L, Schneider W, et al. Ascending aortic elongation and the risk of dissection. Eur J Cardiothorac Surg. 2016;50:241–7.CrossRef
9.
go back to reference Sugawara J, Hayashi K, Tanaka H. Arterial path length estimation on brachial-ankle pulse wave velocity: validity of height-based formulas. J Hypertens. 2014;32:881–9.CrossRef Sugawara J, Hayashi K, Tanaka H. Arterial path length estimation on brachial-ankle pulse wave velocity: validity of height-based formulas. J Hypertens. 2014;32:881–9.CrossRef
10.
go back to reference Filipovský J, Mayer O, Dolejšová M, Seidlerová J. The assessment of carotid–femoral distance for aortic pulse wave velocity: should it be estimated from body height? Artery Res. 2010;4:19–23.CrossRef Filipovský J, Mayer O, Dolejšová M, Seidlerová J. The assessment of carotid–femoral distance for aortic pulse wave velocity: should it be estimated from body height? Artery Res. 2010;4:19–23.CrossRef
11.
go back to reference Hallab M, Chevalet P, Dahou A, Berrut G. Relationship between the aortic valves and an anatomical landmark using chest CT scan. Artery Res. 2011;6:55–7.CrossRef Hallab M, Chevalet P, Dahou A, Berrut G. Relationship between the aortic valves and an anatomical landmark using chest CT scan. Artery Res. 2011;6:55–7.CrossRef
12.
go back to reference Sugawara J, Hayashi K, Yokoi T, Tanaka H. Age-associated elongation of the ascending aorta in adults. JACC Cardiovasc Imaging. 2008;1:739–48.CrossRef Sugawara J, Hayashi K, Yokoi T, Tanaka H. Age-associated elongation of the ascending aorta in adults. JACC Cardiovasc Imaging. 2008;1:739–48.CrossRef
13.
go back to reference Weber T, Ammer M, Rammer M, Adji A, O'Rourke MF, Wassertheurer S, et al. Noninvasive determination of carotid-femoral pulse wave velocity depends critically on assessment of travel distance: a comparison with invasive measurement. J Hypertens. 2009;27:1624–30.CrossRef Weber T, Ammer M, Rammer M, Adji A, O'Rourke MF, Wassertheurer S, et al. Noninvasive determination of carotid-femoral pulse wave velocity depends critically on assessment of travel distance: a comparison with invasive measurement. J Hypertens. 2009;27:1624–30.CrossRef
14.
go back to reference Huybrechts SA, Devos DG, Vermeersch SJ, Mahieu D, Achten E, de Backer TL, et al. Carotid to femoral pulse wave velocity: a comparison of real travelled aortic path lengths determined by MRI and superficial measurements. J Hypertens. 2011;29:1577–82.CrossRef Huybrechts SA, Devos DG, Vermeersch SJ, Mahieu D, Achten E, de Backer TL, et al. Carotid to femoral pulse wave velocity: a comparison of real travelled aortic path lengths determined by MRI and superficial measurements. J Hypertens. 2011;29:1577–82.CrossRef
15.
go back to reference Vermeersch SJ, Rietzschel ER, De Buyzere ML, Van Bortel LM, Gillebert TC, Verdonck PR, et al. Distance measurements for the assessment of carotid to femoral pulse wave velocity. J Hypertens. 2009;27(12):2377–85.CrossRef Vermeersch SJ, Rietzschel ER, De Buyzere ML, Van Bortel LM, Gillebert TC, Verdonck PR, et al. Distance measurements for the assessment of carotid to femoral pulse wave velocity. J Hypertens. 2009;27(12):2377–85.CrossRef
16.
go back to reference Pierce GL, Casey DP, Fiedorowicz JG, Seals DR, Curry TB, Barnes JN, et al. Aortic pulse wave velocity and reflecting distance estimation from peripheral waveforms in humans: detection of age- and exercise training-related differences. Am J Physiol Heart Circ Physiol. 2013;305(1):H135–42.CrossRef Pierce GL, Casey DP, Fiedorowicz JG, Seals DR, Curry TB, Barnes JN, et al. Aortic pulse wave velocity and reflecting distance estimation from peripheral waveforms in humans: detection of age- and exercise training-related differences. Am J Physiol Heart Circ Physiol. 2013;305(1):H135–42.CrossRef
17.
go back to reference Igari T. The length of the aorta from the subclavian artery to the renal artery based on computed tomographic measurements in Japanese adults. J Artif Organs. 2006;9:267–70.CrossRef Igari T. The length of the aorta from the subclavian artery to the renal artery based on computed tomographic measurements in Japanese adults. J Artif Organs. 2006;9:267–70.CrossRef
18.
go back to reference Weir-McCall JR, Brown L, Summersgill J, Talarczyk P, Bonnici-Mallia M, Chin SC, et al. Development and validation of a path length calculation for carotid-femoral pulse wave velocity measurement: a TASCFORCE, SUMMIT, and Caerphilly collaborative venture. Hypertension. 2018;71(5):937–45.CrossRef Weir-McCall JR, Brown L, Summersgill J, Talarczyk P, Bonnici-Mallia M, Chin SC, et al. Development and validation of a path length calculation for carotid-femoral pulse wave velocity measurement: a TASCFORCE, SUMMIT, and Caerphilly collaborative venture. Hypertension. 2018;71(5):937–45.CrossRef
19.
go back to reference Townsend RR, Wilkinson IB, Schiffrin EL, Avolio AP, Chirinos JA, et al. Recommendations for improving and standardizing vascular research on arterial stiffness: a scientific statement from the American Heart Association. Hypertension. 2015;66:698–722.CrossRef Townsend RR, Wilkinson IB, Schiffrin EL, Avolio AP, Chirinos JA, et al. Recommendations for improving and standardizing vascular research on arterial stiffness: a scientific statement from the American Heart Association. Hypertension. 2015;66:698–722.CrossRef
20.
go back to reference Pereira T, Correia C, Cardoso J. Novel methods for pulse wave velocity measurement. J Med Biol Eng. 2015;35:555–65.CrossRef Pereira T, Correia C, Cardoso J. Novel methods for pulse wave velocity measurement. J Med Biol Eng. 2015;35:555–65.CrossRef
21.
go back to reference Shin H, Chavan A, Witthus F, Selle D, Stamm G, Peitgen HO, et al. Precise determination of aortic length in patients with aortic stent grafts: in vivo evaluation of a thinning algorithm applied to CT angiography data. Eur Radiol. 2001;11:733–8.CrossRef Shin H, Chavan A, Witthus F, Selle D, Stamm G, Peitgen HO, et al. Precise determination of aortic length in patients with aortic stent grafts: in vivo evaluation of a thinning algorithm applied to CT angiography data. Eur Radiol. 2001;11:733–8.CrossRef
22.
go back to reference Alberta HB, Takayama T, Smits TC, Wendorff BB, Cambria RP, Farber MA, et al. Aortic arch morphology and aortic length in patients with dissection, traumatic, and aneurysmal disease. Eur J Vasc Endovasc Surg. 2015;50:754–60.CrossRef Alberta HB, Takayama T, Smits TC, Wendorff BB, Cambria RP, Farber MA, et al. Aortic arch morphology and aortic length in patients with dissection, traumatic, and aneurysmal disease. Eur J Vasc Endovasc Surg. 2015;50:754–60.CrossRef
23.
go back to reference Rylski B, Desjardins B, Moser W, Bavaria JE, Milewski RK. Gender-related changes in aortic geometry throughout life. Eur J Cardiothorac Surg. 2014;45:805–11.CrossRef Rylski B, Desjardins B, Moser W, Bavaria JE, Milewski RK. Gender-related changes in aortic geometry throughout life. Eur J Cardiothorac Surg. 2014;45:805–11.CrossRef
24.
go back to reference Rezai MR, Cowan BR, Sherratt N, Finn JD, Wu FC, Cruickshank JK. A magnetic resonance perspective of the pulse wave transit time by the Arteriograph device and potential for improving aortic length estimation for central pulse wave velocity. Blood Press Monit. 2013;18:111–8.CrossRef Rezai MR, Cowan BR, Sherratt N, Finn JD, Wu FC, Cruickshank JK. A magnetic resonance perspective of the pulse wave transit time by the Arteriograph device and potential for improving aortic length estimation for central pulse wave velocity. Blood Press Monit. 2013;18:111–8.CrossRef
25.
go back to reference van Engelen A, Silva Vieira M, Rafiq I, Cecelja M, Schneider T, de Bliek H, et al. Aortic length measurements for pulse wave velocity calculation: manual 2D vs automated 3D centreline extraction. J Cardiovasc Magn Reson. 2017;19:32.CrossRef van Engelen A, Silva Vieira M, Rafiq I, Cecelja M, Schneider T, de Bliek H, et al. Aortic length measurements for pulse wave velocity calculation: manual 2D vs automated 3D centreline extraction. J Cardiovasc Magn Reson. 2017;19:32.CrossRef
27.
go back to reference Kaldmäe M, Viigimaa M, Zemtsovskaja G, Kaart T, Abina J, Annuk M. Prevalence and determinants of hypertension in Estonian adults. Scand J Public Health. 2014;42:504–10.CrossRef Kaldmäe M, Viigimaa M, Zemtsovskaja G, Kaart T, Abina J, Annuk M. Prevalence and determinants of hypertension in Estonian adults. Scand J Public Health. 2014;42:504–10.CrossRef
28.
go back to reference Trachet B, Reymond P, Kips J, Swillens A, De Buyzere M, Suys B, et al. Numerical validation of a new method to assess aortic pulse wave velocity from a single recording of a brachial artery waveform with an occluding cuff. Ann Biomed Eng. 2010;38(3):876–88.CrossRef Trachet B, Reymond P, Kips J, Swillens A, De Buyzere M, Suys B, et al. Numerical validation of a new method to assess aortic pulse wave velocity from a single recording of a brachial artery waveform with an occluding cuff. Ann Biomed Eng. 2010;38(3):876–88.CrossRef
31.
go back to reference Sorkin JD, Muller DC, Andres R. Longitudinal change in height of men and women: implications for interpretation of the body mass index: the Baltimore longitudinal study of aging. Am J Epidemiol. 1999;150(9):969–77.CrossRef Sorkin JD, Muller DC, Andres R. Longitudinal change in height of men and women: implications for interpretation of the body mass index: the Baltimore longitudinal study of aging. Am J Epidemiol. 1999;150(9):969–77.CrossRef
32.
go back to reference Drøyvold WB, Nilsen TI, Krüger O, Holmen TL, Krokstad S, Midthjell K, et al. Change in height, weight and body mass index: longitudinal data from the HUNT study in Norway. Int J Obes. 2006;30(6):935–9.CrossRef Drøyvold WB, Nilsen TI, Krüger O, Holmen TL, Krokstad S, Midthjell K, et al. Change in height, weight and body mass index: longitudinal data from the HUNT study in Norway. Int J Obes. 2006;30(6):935–9.CrossRef
33.
go back to reference Krüger T, Sandoval Boburg R, Lescan M, Oikonomou A, Schneider W, Vöhringer L, et al. Aortic elongation in aortic aneurysm and dissection: the Tübingen aortic pathoanatomy (TAIPAN) project. Eur J Cardiothorac Surg. 2018;54:26–3.CrossRef Krüger T, Sandoval Boburg R, Lescan M, Oikonomou A, Schneider W, Vöhringer L, et al. Aortic elongation in aortic aneurysm and dissection: the Tübingen aortic pathoanatomy (TAIPAN) project. Eur J Cardiothorac Surg. 2018;54:26–3.CrossRef
Metadata
Title
Construction of gender-specific regression models for aortic length estimation based on computed tomography images
Authors
Galina Zemtsovskaja
Kristjan Pilt
Andrei Samarin
Jelena Abina
Kalju Meigas
Margus Viigimaa
Publication date
05-12-2019
Publisher
Springer Berlin Heidelberg
Published in
Health and Technology / Issue 3/2020
Print ISSN: 2190-7188
Electronic ISSN: 2190-7196
DOI
https://doi.org/10.1007/s12553-019-00391-8

Other articles of this Issue 3/2020

Health and Technology 3/2020 Go to the issue

Premium Partner