Skip to main content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Cognitive Neurodynamics 1/2023

27-04-2022 | Research Article

Construction of the dynamic model of SCI rehabilitation using bidirectional stimulation and its application in rehabilitating with BCI

Authors: Zhengzhe Cui, Juan Lin, Xiangxiang Fu, Shiwei Zhang, Peng Li, Xixi Wu, Xue Wang, Weidong Chen, Shiqiang Zhu, Yongqiang Li

Published in: Cognitive Neurodynamics | Issue 1/2023

Login to get access

Abstract

Patients with complete spinal cord injury have a complete loss of motor and sensory functions below the injury plane, leading to a complete loss of function of the nerve pathway in the injured area. Improving the microenvironment in the injured area of patients with spinal cord injury, promoting axon regeneration of the nerve cells is challenging research fields. The brain-computer interface rehabilitation system is different from the other rehabilitation techniques. It can exert bidirectional stimulation on the spinal cord injury area, and can make positively rehabilitation effects of the patient with complete spinal cord injury. A dynamic model was constructed for the patient with spinal cord injury under-stimulation therapy, and the mechanism of the brain-computer interface in rehabilitation training was explored. The effects of the three current rehabilitation treatment methods on the microenvironment in a microscopic nonlinear model were innovatively unified and a complex system mapping relationship from the microscopic axon growth to macroscopic motor functions was constructed. The basic structure of the model was determined by simulating and fitting the data of the open rat experiments. A clinical rehabilitation experiment of spinal cord injury based on brain-computer interface was built, recruiting a patient with complete spinal cord injury, and the rehabilitation training and follow-up were conducted. The changes in the motor function of the patient was simulated and predicted through the constructed model, and the trend in the motor function improvement was successfully predicted over time. This proposed model explores the mechanism of brain-computer interface in rehabilitating patients with complete spinal cord injury, and it is also an application of complex system theory in rehabilitation medicine.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Appendix
Available only for authorised users
Literature
go back to reference Aravind N, Harvey LA, Glinsky JV (2019) Physiotherapy interventions for increasing muscle strength in people with spinal cord injuries: a systematic review. Spinal Cord 57:449–460 CrossRef Aravind N, Harvey LA, Glinsky JV (2019) Physiotherapy interventions for increasing muscle strength in people with spinal cord injuries: a systematic review. Spinal Cord 57:449–460 CrossRef
go back to reference Awad BI, Carmody MA, Zhang X, Lin VW, Steinmetz MP (2015) Transcranial magnetic stimulation after spinal cord injury. World Neurosurg 83:232–235 CrossRef Awad BI, Carmody MA, Zhang X, Lin VW, Steinmetz MP (2015) Transcranial magnetic stimulation after spinal cord injury. World Neurosurg 83:232–235 CrossRef
go back to reference Barnabe-Heider F, Frisén J (2008) Stem cells for spinal cord repair. Cell Stem Cell 3(1):16–24 CrossRef Barnabe-Heider F, Frisén J (2008) Stem cells for spinal cord repair. Cell Stem Cell 3(1):16–24 CrossRef
go back to reference Baunsgaard CB, Nissen UV, Brust AK, Frotzler A, Ribeill C, Kalke YB, Leon N, Gomez B, Samuelsson K, Antepohl W, Holmstrom U, Marklund N, Glott T, Opheim A, Penalva JB, Murillo N, Nachtegaal J, Faber W, Biering-Sorensen F (2018) Exoskeleton gait training after spinal cord injury: an exploratory study on secondary health conditions. J Rehabil Med 50:806–813 CrossRef Baunsgaard CB, Nissen UV, Brust AK, Frotzler A, Ribeill C, Kalke YB, Leon N, Gomez B, Samuelsson K, Antepohl W, Holmstrom U, Marklund N, Glott T, Opheim A, Penalva JB, Murillo N, Nachtegaal J, Faber W, Biering-Sorensen F (2018) Exoskeleton gait training after spinal cord injury: an exploratory study on secondary health conditions. J Rehabil Med 50:806–813 CrossRef
go back to reference Biasiucci A, Leeb R, Iturrate I, Perdikis S, Al-Kho Da Iry A, Corbet T, Schnider A, Schmidlin T, Zhang H, Bassolino M (2018) Brain-actuated functional electrical stimulation elicits lasting arm motor recovery after stroke. Nat Commun 9:2421 CrossRef Biasiucci A, Leeb R, Iturrate I, Perdikis S, Al-Kho Da Iry A, Corbet T, Schnider A, Schmidlin T, Zhang H, Bassolino M (2018) Brain-actuated functional electrical stimulation elicits lasting arm motor recovery after stroke. Nat Commun 9:2421 CrossRef
go back to reference Blits B, Oudega M, Boer GJ, Bunge MB, Verhaagen J (2003) Adeno-associated viral vector-mediated neurotrophin gene transfer in the injured adult rat spinal cord improves hind-limb function. Neuroscience 118:271–281 CrossRef Blits B, Oudega M, Boer GJ, Bunge MB, Verhaagen J (2003) Adeno-associated viral vector-mediated neurotrophin gene transfer in the injured adult rat spinal cord improves hind-limb function. Neuroscience 118:271–281 CrossRef
go back to reference Calvert JS, Grahn PJ, Zhao KD, Lee KH (2019) Emergence of epidural electrical stimulation to facilitate sensorimotor network functionality after spinal cord injury. Neuromodulation 22:244–252 CrossRef Calvert JS, Grahn PJ, Zhao KD, Lee KH (2019) Emergence of epidural electrical stimulation to facilitate sensorimotor network functionality after spinal cord injury. Neuromodulation 22:244–252 CrossRef
go back to reference Courtine G, Song B, Roy RR, Zhong H, Herrmann JE, Ao Y, Qi J, Edgerton VR, Sofroniew MV (2007) Recovery of supraspinal control of stepping via indirect propriospinal relay connections after spinal cord injury. Nat Med 14:69–74 CrossRef Courtine G, Song B, Roy RR, Zhong H, Herrmann JE, Ao Y, Qi J, Edgerton VR, Sofroniew MV (2007) Recovery of supraspinal control of stepping via indirect propriospinal relay connections after spinal cord injury. Nat Med 14:69–74 CrossRef
go back to reference Ditunno JF, Young W, Donovan WH, Creasey G (1994) The international standards booklet for neurological and functional classification of spinal cord injury. Spinal Cord 32:70–80 CrossRef Ditunno JF, Young W, Donovan WH, Creasey G (1994) The international standards booklet for neurological and functional classification of spinal cord injury. Spinal Cord 32:70–80 CrossRef
go back to reference Donati AR, Shokur S, Morya E, Campos DS, Moioli RC, Gitti CM, Augusto PB, Tripodi S, Pires CG, Pereira GA, Brasil FL, Gallo S, Lin AA, Takigami AK, Aratanha MA, Joshi S, Bleuler H, Cheng G, Rudolph A, Nicolelis MA (2016) Long-term training with a brain-machine interface-based gait protocol induces partial neurological recovery in paraplegic patients. Sci Rep 6:30383 CrossRef Donati AR, Shokur S, Morya E, Campos DS, Moioli RC, Gitti CM, Augusto PB, Tripodi S, Pires CG, Pereira GA, Brasil FL, Gallo S, Lin AA, Takigami AK, Aratanha MA, Joshi S, Bleuler H, Cheng G, Rudolph A, Nicolelis MA (2016) Long-term training with a brain-machine interface-based gait protocol induces partial neurological recovery in paraplegic patients. Sci Rep 6:30383 CrossRef
go back to reference Fehlings MG, Weidner N (2016) Spinal cord injury and regeneration. In: Vialle LR (ed) AOSpine masters series. Thieme, Stuttgart Fehlings MG, Weidner N (2016) Spinal cord injury and regeneration. In: Vialle LR (ed) AOSpine masters series. Thieme, Stuttgart
go back to reference Gaudet AD, Fonken LK (2018) Glial cells shape pathology and repair after spinal cord injury. Neurotherapeutics 15:554–577 CrossRef Gaudet AD, Fonken LK (2018) Glial cells shape pathology and repair after spinal cord injury. Neurotherapeutics 15:554–577 CrossRef
go back to reference Grant B (2007) The powers that be. The Scientist, 21(3) Grant B (2007) The powers that be. The Scientist, 21(3)
go back to reference Hamid S, Hayek R (2008) Role of electrical stimulation for rehabilitation and regeneration after spinal cord injury: an overview. Eur Spine J 17:1256–1269 CrossRef Hamid S, Hayek R (2008) Role of electrical stimulation for rehabilitation and regeneration after spinal cord injury: an overview. Eur Spine J 17:1256–1269 CrossRef
go back to reference Hou J, Nelson R, Nissim N, Parmer R, Thompson FJ, Bose P (2014) Effect of combined treadmill training and magnetic stimulation on spasticity and gait impairments after cervical spinal cord injury. J Neurotrauma 31:1088–1106 CrossRef Hou J, Nelson R, Nissim N, Parmer R, Thompson FJ, Bose P (2014) Effect of combined treadmill training and magnetic stimulation on spasticity and gait impairments after cervical spinal cord injury. J Neurotrauma 31:1088–1106 CrossRef
go back to reference Kiehn O (2006) Locomotor circuits in the mammalian spinal cord. Annu Rev Neurosci 29:279–306 CrossRef Kiehn O (2006) Locomotor circuits in the mammalian spinal cord. Annu Rev Neurosci 29:279–306 CrossRef
go back to reference Kirshblum SC, Waring W, Biering-Sorensen F, Burns SP, Johansen M, Schmidt-Read M, Donovan W, Graves D, Jha A, Jones L, Mulcahey MJ, Krassioukov A (2011) International standards for neurological classification of spinal cord injury (Revised 2011). J Spinal Cord Med 34:547–554 CrossRef Kirshblum SC, Waring W, Biering-Sorensen F, Burns SP, Johansen M, Schmidt-Read M, Donovan W, Graves D, Jha A, Jones L, Mulcahey MJ, Krassioukov A (2011) International standards for neurological classification of spinal cord injury (Revised 2011). J Spinal Cord Med 34:547–554 CrossRef
go back to reference Litvak V, Zeller D, Oostenveld R, Maris E, Cohen A, Schramm A, Gentner R, Zaaroor M, Pratt H, Classen J (2007) LTP-like changes induced by paired associative stimulation of the primary somatosensory cortex in humans: source analysis and associated changes in behaviour. Eur J Neurosci 25:2862–2874 CrossRef Litvak V, Zeller D, Oostenveld R, Maris E, Cohen A, Schramm A, Gentner R, Zaaroor M, Pratt H, Classen J (2007) LTP-like changes induced by paired associative stimulation of the primary somatosensory cortex in humans: source analysis and associated changes in behaviour. Eur J Neurosci 25:2862–2874 CrossRef
go back to reference Lu Q (2015) Coupling relationship between the central pattern generator and the cerebral cortex with time delay. Cogn Neurodyn 9:423–436 CrossRef Lu Q (2015) Coupling relationship between the central pattern generator and the cerebral cortex with time delay. Cogn Neurodyn 9:423–436 CrossRef
go back to reference Lu Q, Tian J (2014) Synchronization and stochastic resonance of the small-world neural network based on the CPG. Cogn Neurodyn 8:217–226 CrossRef Lu Q, Tian J (2014) Synchronization and stochastic resonance of the small-world neural network based on the CPG. Cogn Neurodyn 8:217–226 CrossRef
go back to reference Marino RJ, Burns S, Graves DE, Leiby BE, Kirshblum S, Lammertse DP (2011) Upper- and lower-extremity motor recovery after traumatic cervical spinal cord injury: an update from the national spinal cord injury database. Arch Phys Med Rehabil 92:369–375 CrossRef Marino RJ, Burns S, Graves DE, Leiby BE, Kirshblum S, Lammertse DP (2011) Upper- and lower-extremity motor recovery after traumatic cervical spinal cord injury: an update from the national spinal cord injury database. Arch Phys Med Rehabil 92:369–375 CrossRef
go back to reference Martin AR, Aleksanderek I, Cohen-Adad J, Tarmohamed Z, Tetreault L, Smith N, Cadotte DW, Crawley A, Ginsberg H, Mikulis DJ, Fehlings MG (2016) Translating state-of-the-art spinal cord MRI techniques to clinical use: a systematic review of clinical studies utilizing DTI, MT, MWF, MRS, and fMRI. Neuroimage Clin 10:192–238 CrossRef Martin AR, Aleksanderek I, Cohen-Adad J, Tarmohamed Z, Tetreault L, Smith N, Cadotte DW, Crawley A, Ginsberg H, Mikulis DJ, Fehlings MG (2016) Translating state-of-the-art spinal cord MRI techniques to clinical use: a systematic review of clinical studies utilizing DTI, MT, MWF, MRS, and fMRI. Neuroimage Clin 10:192–238 CrossRef
go back to reference Mitchell M (2011) Complexity: a guided tour. Oxford University Press, USA Mitchell M (2011) Complexity: a guided tour. Oxford University Press, USA
go back to reference Okano H, Yamanaka S (2014) iPS cell technologies: significance and applications to CNS regeneration and disease. Mol Brain 7:22 CrossRef Okano H, Yamanaka S (2014) iPS cell technologies: significance and applications to CNS regeneration and disease. Mol Brain 7:22 CrossRef
go back to reference Petersen JA, Wilm BJ, von Meyenburg J, Schubert M, Seifert B, Najafi Y, Dietz V, Kollias S (2012) Chronic cervical spinal cord injury: DTI correlates with clinical and electrophysiological measures. J Neurotrauma 29:1556–1566 CrossRef Petersen JA, Wilm BJ, von Meyenburg J, Schubert M, Seifert B, Najafi Y, Dietz V, Kollias S (2012) Chronic cervical spinal cord injury: DTI correlates with clinical and electrophysiological measures. J Neurotrauma 29:1556–1566 CrossRef
go back to reference Petrosyan HA, Hunanyan AS, Alessi V, Schnell L, Levine J, Arvanian VL (2013) Neutralization of inhibitory molecule NG2 improves synaptic transmission, retrograde transport, and locomotor function after spinal cord injury in adult rats. J Neurosci 33:4032–4043 CrossRef Petrosyan HA, Hunanyan AS, Alessi V, Schnell L, Levine J, Arvanian VL (2013) Neutralization of inhibitory molecule NG2 improves synaptic transmission, retrograde transport, and locomotor function after spinal cord injury in adult rats. J Neurosci 33:4032–4043 CrossRef
go back to reference Petrosyan HA, Alessi V, Hunanyan AS, Sisto SA, Arvanian VL (2015) Spinal electro-magnetic stimulation combined with transgene delivery of neurotrophin NT-3 and exercise: novel combination therapy for spinal contusion injury. J Neurophysiol 114:2923–2940 CrossRef Petrosyan HA, Alessi V, Hunanyan AS, Sisto SA, Arvanian VL (2015) Spinal electro-magnetic stimulation combined with transgene delivery of neurotrophin NT-3 and exercise: novel combination therapy for spinal contusion injury. J Neurophysiol 114:2923–2940 CrossRef
go back to reference Ry C (1928) Degeneration and regeneration of the nervous system. Oxford University Press, London Ry C (1928) Degeneration and regeneration of the nervous system. Oxford University Press, London
go back to reference Shokur S, Donati ARC, Campos DSF, Gitti C, Bao G, Fischer D, Almeida S, Braga VAS, Augusto P, Petty C, Alho EJL, Lebedev M, Song AW, Nicolelis MAL (2018) Training with brain-machine interfaces, visuo-tactile feedback and assisted locomotion improves sensorimotor, visceral, and psychological signs in chronic paraplegic patients. PLoS ONE 13:e0206464 CrossRef Shokur S, Donati ARC, Campos DSF, Gitti C, Bao G, Fischer D, Almeida S, Braga VAS, Augusto P, Petty C, Alho EJL, Lebedev M, Song AW, Nicolelis MAL (2018) Training with brain-machine interfaces, visuo-tactile feedback and assisted locomotion improves sensorimotor, visceral, and psychological signs in chronic paraplegic patients. PLoS ONE 13:e0206464 CrossRef
go back to reference Venugopal S, Hamm TM, Jung R (2012) Differential contributions of somatic and dendritic calcium-dependent potassium currents to the control of motoneuron excitability following spinal cord injury. Cogn Neurodyn 6:283–293 CrossRef Venugopal S, Hamm TM, Jung R (2012) Differential contributions of somatic and dendritic calcium-dependent potassium currents to the control of motoneuron excitability following spinal cord injury. Cogn Neurodyn 6:283–293 CrossRef
go back to reference West GB, Brown JH (2005) The origin of allometric scaling laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biological structure and organization. J Exp Biol 208:1575–1592 CrossRef West GB, Brown JH (2005) The origin of allometric scaling laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biological structure and organization. J Exp Biol 208:1575–1592 CrossRef
go back to reference Wirz M, Zemon DH, Rupp R, Scheel A, Colombo G, Dietz V, Hornby TG (2005) Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: a multicenter trial. Arch Phys Med Rehabil 86:672–680 CrossRef Wirz M, Zemon DH, Rupp R, Scheel A, Colombo G, Dietz V, Hornby TG (2005) Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: a multicenter trial. Arch Phys Med Rehabil 86:672–680 CrossRef
go back to reference Wirz M, van Hedel HJ, Rupp R, Curt A, Dietz V (2006) Muscle force and gait performance: relationships after spinal cord injury. Arch Phys Med Rehabil 87:1218–1222 CrossRef Wirz M, van Hedel HJ, Rupp R, Curt A, Dietz V (2006) Muscle force and gait performance: relationships after spinal cord injury. Arch Phys Med Rehabil 87:1218–1222 CrossRef
go back to reference Xie J, Jiang L, Li Y, Chen B, Li F, Jiang Y, Gao D, Deng L, Lv X, Ma X (2021) Rehabilitation of motor function in children with cerebral palsy based on motor imagery. Cogn Neurodyn 15:939–948 CrossRef Xie J, Jiang L, Li Y, Chen B, Li F, Jiang Y, Gao D, Deng L, Lv X, Ma X (2021) Rehabilitation of motor function in children with cerebral palsy based on motor imagery. Cogn Neurodyn 15:939–948 CrossRef
go back to reference Yamaguchi T, Fujiwara T, Tsai YA, Tang SC, Kawakami M, Mizuno K, Kodama M, Masakado Y, Liu M (2016) The effects of anodal transcranial direct current stimulation and patterned electrical stimulation on spinal inhibitory interneurons and motor function in patients with spinal cord injury. Exp Brain Res 234:1469–1478 CrossRef Yamaguchi T, Fujiwara T, Tsai YA, Tang SC, Kawakami M, Mizuno K, Kodama M, Masakado Y, Liu M (2016) The effects of anodal transcranial direct current stimulation and patterned electrical stimulation on spinal inhibitory interneurons and motor function in patients with spinal cord injury. Exp Brain Res 234:1469–1478 CrossRef
go back to reference Yoon EJ, Kim YK, Kim HR, Kim SE, Lee Y, Shin HI (2014) Transcranial direct current stimulation to lessen neuropathic pain after spinal cord injury: a mechanistic PET study. Neurorehabil Neural Repair 28:250–259 CrossRef Yoon EJ, Kim YK, Kim HR, Kim SE, Lee Y, Shin HI (2014) Transcranial direct current stimulation to lessen neuropathic pain after spinal cord injury: a mechanistic PET study. Neurorehabil Neural Repair 28:250–259 CrossRef
Metadata
Title
Construction of the dynamic model of SCI rehabilitation using bidirectional stimulation and its application in rehabilitating with BCI
Authors
Zhengzhe Cui
Juan Lin
Xiangxiang Fu
Shiwei Zhang
Peng Li
Xixi Wu
Xue Wang
Weidong Chen
Shiqiang Zhu
Yongqiang Li
Publication date
27-04-2022
Publisher
Springer Netherlands
Published in
Cognitive Neurodynamics / Issue 1/2023
Print ISSN: 1871-4080
Electronic ISSN: 1871-4099
DOI
https://doi.org/10.1007/s11571-022-09804-3

Other articles of this Issue 1/2023

Cognitive Neurodynamics 1/2023 Go to the issue