Skip to main content
Top

2014 | OriginalPaper | Chapter

12. Continuous-State Branching Processes

Author : Andreas E. Kyprianou

Published in: Fluctuations of Lévy Processes with Applications

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Our interest in continuous-state branching processes will be in exposing their intimate relationship with spectrally positive Lévy processes. A flavour for this has already been given in Chap. 1, where it was shown that a compound Poisson process killed on exiting (0,∞) can be time changed to obtain a continuous-time Bienaymé–Galton–Watson process, and vice versa. The analogue of this path transformation in greater generality consists of time changing the path of a spectrally positive Lévy process, killed on exiting (0,∞), to obtain a process equal in law to a Markov process which observes the so-called branching property (defined in more detail later) and vice versa. The latter process is what we refer to as the continuous-state branching process.
Having looked closely at the Lamperti transform, we shall give an account of a number of observations concerning the long-term behaviour, as well as conditioning on survival, of continuous-state branching processes. Thanks to some of the results in Chap. 8, semi-explicit results can be obtained.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
See also Silverstein (1968).
 
2
As usual, for x≥0, the measure P x satisfies the property P x (Y 0=x)=1.
 
3
Recall that our definition of spectrally positive processes excludes subordinators. See the discussion following Lemma 2.14.
 
4
As usual, we understand the process X killed at rate q to mean that it is sent to +∞ after an independent and exponentially distributed time with parameter q. Further q=0 means there is no killing.
 
5
Here and later on, we make an abuse of notation in working with the independent and exponentially distributed random variables e q . In taking limits as q↓0 in, for example, (12.21), we appear to be working with an uncountable sequence of independent exponential random variables on the same probability space. This is possible, on account of the fact that, for each q>0, we may write e q =q −1 e 1.
 
6
Examples of such processes when ϕ(λ)= α for α∈(0,1) and c>0 are considered by Etheridge and Williams (2003).
 
7
Note that for each ε>0, the Lévy–Itô
 
8
This exercise is due to Prof. A.G. Pakes.
 
9
In Theorem 4.7, the Kella–Whitt martingale was only introduced for Lévy processes with bounded variation paths. Thereafter it was noted that, in fact, the conclusion of this theorem is still valid when the Lévy process has paths of unbounded variation.
 
10
There is a minor error in Grey (1974). In the current setting, Theorem 3 (ii) of this paper states that P 1(Ξ=0)=P 1(ζ<∞), which cannot be true for all supercritical continuous-state branching processes. Indeed, suppose that ∫1/ψ(ξ)dξ=∞, so that P 1(ζ<∞)=0. In that case, Theorem 12.7 tells us that P 1(lim t↑∞ Y t =0)=exp{−Φ(0)}. However, since λ∈(0,Φ(0)), η t (λ)→0 as t↑∞ and we see that η t (λ)Y t →0 on {lim t↑∞ Y t =0}. This also implies that exp{−Φ(0)}≤P 1(Ξ=0), which is a contradiction. The error occurs on line 11 of p. 675 where it is claimed that “ϕ(θ)→−logq (which may be +∞) as θ→∞”.
 
Literature
go back to reference Berestycki, J., Kyprianou, A.E. and Murillo-Salas, A. (2011b) The prolific backbone for supercritical superdiffusions. Stoch. Process. Appl. 121, 1315–1331. CrossRefMATHMathSciNet Berestycki, J., Kyprianou, A.E. and Murillo-Salas, A. (2011b) The prolific backbone for supercritical superdiffusions. Stoch. Process. Appl. 121, 1315–1331. CrossRefMATHMathSciNet
go back to reference Bertoin, J. (1993) Splitting at the infimum and excursions in half-lines for random walks and Lévy processes. Stoch. Process. Appl. 47, 17–35. CrossRefMATHMathSciNet Bertoin, J. (1993) Splitting at the infimum and excursions in half-lines for random walks and Lévy processes. Stoch. Process. Appl. 47, 17–35. CrossRefMATHMathSciNet
go back to reference Bryn-Jones, A. and Doney, R.A. (2006) A functional central limit theorem for random walks conditioned to stay non-negative. J. Lond. Math. Soc. 74, 244–258. CrossRefMATHMathSciNet Bryn-Jones, A. and Doney, R.A. (2006) A functional central limit theorem for random walks conditioned to stay non-negative. J. Lond. Math. Soc. 74, 244–258. CrossRefMATHMathSciNet
go back to reference Caballero, M.-E., Lambert, A. and Uribe Bravo, G. (2009) Proof(s) of the Lamperti representation of continuous-state branching processes. Probab. Surv. 6, 62–89. CrossRefMATHMathSciNet Caballero, M.-E., Lambert, A. and Uribe Bravo, G. (2009) Proof(s) of the Lamperti representation of continuous-state branching processes. Probab. Surv. 6, 62–89. CrossRefMATHMathSciNet
go back to reference Chaumont, L. and Doney, R.A. (2005) On Lévy processes conditioned to stay positive. Electron. J. Probab. 10, 948–961. CrossRefMathSciNet Chaumont, L. and Doney, R.A. (2005) On Lévy processes conditioned to stay positive. Electron. J. Probab. 10, 948–961. CrossRefMathSciNet
go back to reference Chen, Y.T. and Delmas, J.-F. (2012) Smaller population size at the MRCA time for stationary branching processes. Ann. Probab. 40, 2034–2068. CrossRefMATHMathSciNet Chen, Y.T. and Delmas, J.-F. (2012) Smaller population size at the MRCA time for stationary branching processes. Ann. Probab. 40, 2034–2068. CrossRefMATHMathSciNet
go back to reference Duquesne, T. and Le Gall, J.–F. (2002) Random trees, Lévy processes and spatial branching processes. Astérisque nr. 281. Duquesne, T. and Le Gall, J.–F. (2002) Random trees, Lévy processes and spatial branching processes. Astérisque nr. 281.
go back to reference Dynkin, E.B. (2002) Diffusions, superdiffusions and partial differential equations. American Mathematical Society Colloquium Publications, 50. American Mathematical Society, Providence. Dynkin, E.B. (2002) Diffusions, superdiffusions and partial differential equations. American Mathematical Society Colloquium Publications, 50. American Mathematical Society, Providence.
go back to reference Etheridge, A.M. (2000) An Introduction to Superprocesses. American Mathematical Society, Providence. MATH Etheridge, A.M. (2000) An Introduction to Superprocesses. American Mathematical Society, Providence. MATH
go back to reference Etheridge, A.M. and Williams, D.R.E. (2003) A decomposition of the (1+β)-superprocess conditioned on survival. Proc. R. Soc. Edinb. A 133, 829–847. CrossRefMATHMathSciNet Etheridge, A.M. and Williams, D.R.E. (2003) A decomposition of the (1+β)-superprocess conditioned on survival. Proc. R. Soc. Edinb. A 133, 829–847. CrossRefMATHMathSciNet
go back to reference Grey, D.R. (1974) Asymptotic behaviour of continuous time, continuous state-space branching processes. J. Appl. Probab. 11, 669–677. CrossRefMATHMathSciNet Grey, D.R. (1974) Asymptotic behaviour of continuous time, continuous state-space branching processes. J. Appl. Probab. 11, 669–677. CrossRefMATHMathSciNet
go back to reference Jirina, M. (1958) Stochastic branching processes with continuous state space. Czechoslov. Math. J. 8, 292–312. MathSciNet Jirina, M. (1958) Stochastic branching processes with continuous state space. Czechoslov. Math. J. 8, 292–312. MathSciNet
go back to reference Konstantopoulos, T. and Richardson, G. (2002) Conditional limit theorems for spectrally positive Lévy processes. Adv. Appl. Probab. 34, 158–178. CrossRefMATHMathSciNet Konstantopoulos, T. and Richardson, G. (2002) Conditional limit theorems for spectrally positive Lévy processes. Adv. Appl. Probab. 34, 158–178. CrossRefMATHMathSciNet
go back to reference Kyprianou, A.E., Liu, R.-L., Murillo-Salas, A. and Ren, Y.-X. (2012a) Supercritical super-Brownian motion with a general branching mechanism and travelling waves. Ann. Inst. Henri Poincaré 48, 661–687. CrossRefMATHMathSciNet Kyprianou, A.E., Liu, R.-L., Murillo-Salas, A. and Ren, Y.-X. (2012a) Supercritical super-Brownian motion with a general branching mechanism and travelling waves. Ann. Inst. Henri Poincaré 48, 661–687. CrossRefMATHMathSciNet
go back to reference Lambert, A. (2000) Completely asymmetric Lévy processes confined in a finite interval. Ann. Inst. Henri Poincaré 36, 251–274. CrossRefMATH Lambert, A. (2000) Completely asymmetric Lévy processes confined in a finite interval. Ann. Inst. Henri Poincaré 36, 251–274. CrossRefMATH
go back to reference Lambert, A. (2001) Arbres, excursions, et processus de Lévy complètement asymétriques. Thèse, doctorat de l’Université Pierre et Marie Curie, Paris. Lambert, A. (2001) Arbres, excursions, et processus de Lévy complètement asymétriques. Thèse, doctorat de l’Université Pierre et Marie Curie, Paris.
go back to reference Lambert, A. (2002) The genealogy of continuous-state branching processes with immigration. Probab. Theory Relat. Fields 122, 42–70. CrossRefMATH Lambert, A. (2002) The genealogy of continuous-state branching processes with immigration. Probab. Theory Relat. Fields 122, 42–70. CrossRefMATH
go back to reference Lambert, A. (2007) Quasi-stationary distributions and the continuous-state branching process conditioned to be never extinct. Electron. J. Probab. 12, 420–446. CrossRefMATHMathSciNet Lambert, A. (2007) Quasi-stationary distributions and the continuous-state branching process conditioned to be never extinct. Electron. J. Probab. 12, 420–446. CrossRefMATHMathSciNet
go back to reference Le Gall, J.-F. (1999) Spatial Branching Processes, Random Snakes and Partial Differential Equations. Lectures in Mathematics, ETH Zürich, Birkhäuser, Basel. CrossRefMATH Le Gall, J.-F. (1999) Spatial Branching Processes, Random Snakes and Partial Differential Equations. Lectures in Mathematics, ETH Zürich, Birkhäuser, Basel. CrossRefMATH
go back to reference Lyons, R., Pemantle, R. and Peres, Y. (1995) Conceptual proofs of LlogL criteria for mean behaviour of branching processes. Ann. Probab.. 23, 1125–1138. CrossRefMATHMathSciNet Lyons, R., Pemantle, R. and Peres, Y. (1995) Conceptual proofs of LlogL criteria for mean behaviour of branching processes. Ann. Probab.. 23, 1125–1138. CrossRefMATHMathSciNet
Metadata
Title
Continuous-State Branching Processes
Author
Andreas E. Kyprianou
Copyright Year
2014
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-37632-0_12