Skip to main content
Top
Published in: Neural Processing Letters 3/2019

09-08-2018

Contractive Slab and Spike Convolutional Deep Belief Network

Authors: Haibo Wang, Xiaojun Bi

Published in: Neural Processing Letters | Issue 3/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Convolutional Deep Belief Network (CDBN) is typically classified into deep generative model. Although CDBN has demonstrated the powerful capacity of feature extraction in unsupervised learning, there still remain diverse challenges in the robust and high-quality feature extraction. This paper designs an advanced hierarchical generative model in order to tackle with these troubles. First, we modify conventional Convolutional Restricted Boltzmann Machine (CRBM) through inducing Gaussian hidden units subsequently following point-wise multiplication with the original binary spike hidden units for high-order feature extraction of the local patch. We theoretically derive entire inferences of this novel model. Second, we attempt to learn more robust features by minimizing L2 norm of the jacobian of the extracted features producing from the modified model as novel regularization trick. This can introduce a localized space contraction benefit for robust feature extraction in turn. Finally, this paper construct a novel deep generative model, Contractive Slab and Spike Convolutional Deep Belief Network (CssCDBN), based on the modified CRBM, in order to learn deeper and more abstract features. The performances on diverse visual tasks indicate that CssCDBN is a more powerful model achieving impressive results over many currently excellent models.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Karpathy A, Toderici G, Shetty S, Leung T, Sukthankar R, Fei-Fei L (2014) Large-scale video classification with convolutional neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, IEEE, pp 1725–1732. https://doi.org/10.1109/cvpr.2014.223 Karpathy A, Toderici G, Shetty S, Leung T, Sukthankar R, Fei-Fei L (2014) Large-scale video classification with convolutional neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, IEEE, pp 1725–1732. https://​doi.​org/​10.​1109/​cvpr.​2014.​223
3.
go back to reference Masci J, Meier U, Ciresan D, Schmidhuber J (2011) Stacked convolutional auto-encoders for hierarchical feature extraction. Lect Notes Comput Sci 6791:52–59CrossRef Masci J, Meier U, Ciresan D, Schmidhuber J (2011) Stacked convolutional auto-encoders for hierarchical feature extraction. Lect Notes Comput Sci 6791:52–59CrossRef
5.
go back to reference Szegedy C, Liu W, Jia YQ, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, IEEE, pp 1-9 Szegedy C, Liu W, Jia YQ, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, IEEE, pp 1-9
6.
go back to reference He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, IEEE, pp 770–778 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, IEEE, pp 770–778
7.
go back to reference Norouzi M, Ranjbar M, Mori G (2009) Stacks of convolutional restricted boltzmann machines for shift-invariant feature learning. In: Proceedings of the IEEE conference on computer vision and pattern recognition, IEEE, pp 2727–2734 Norouzi M, Ranjbar M, Mori G (2009) Stacks of convolutional restricted boltzmann machines for shift-invariant feature learning. In: Proceedings of the IEEE conference on computer vision and pattern recognition, IEEE, pp 2727–2734
8.
go back to reference Lee H, Largman Y, Pham P, Ng AY (2009) Unsupervised feature learning for audio classification using convolutional deep belief networks. In: Proceedings of the international conference on neural information processing systems, pp 1096–1104 Lee H, Largman Y, Pham P, Ng AY (2009) Unsupervised feature learning for audio classification using convolutional deep belief networks. In: Proceedings of the international conference on neural information processing systems, pp 1096–1104
9.
go back to reference Schmidt EM, Kim YE (2011) Learning Emotion-based acoustic features with deep belief networks. In: 2011 IEEE workshop on applications of signal processing to audio and acoustics (Waspaa), pp 65–68 Schmidt EM, Kim YE (2011) Learning Emotion-based acoustic features with deep belief networks. In: 2011 IEEE workshop on applications of signal processing to audio and acoustics (Waspaa), pp 65–68
11.
go back to reference Bengio Y, Lamblin P, Popovici D, Larochelle H (2006) Greedy layer-wise training of deep networks. In: Proceedings of the international conference on neural information processing systems, pp 153–160 Bengio Y, Lamblin P, Popovici D, Larochelle H (2006) Greedy layer-wise training of deep networks. In: Proceedings of the international conference on neural information processing systems, pp 153–160
12.
go back to reference Krizhevsky A (2009) Learning multiple layers of features from tiny images. Science Department, University of Toronto, Tech, pp 1–60. https://doi.org/10.1.1.222.9220 Krizhevsky A (2009) Learning multiple layers of features from tiny images. Science Department, University of Toronto, Tech, pp 1–60. https://​doi.​org/​10.​1.​1.​222.​9220
13.
go back to reference Ranzato M, Krizhevsky A, Hinton GE (2010) Factored 3-way restricted boltzmann machines for modeling natural images. J Mach Learn Res 9:621–628 Ranzato M, Krizhevsky A, Hinton GE (2010) Factored 3-way restricted boltzmann machines for modeling natural images. J Mach Learn Res 9:621–628
14.
go back to reference Swersky K, Ranzato M, Buchman D, Marlin BM, Freitas ND (2011) On autoencoders and score matching for energy based models. In: Proceedings of the international conference on machine learning, pp 1201–1208 Swersky K, Ranzato M, Buchman D, Marlin BM, Freitas ND (2011) On autoencoders and score matching for energy based models. In: Proceedings of the international conference on machine learning, pp 1201–1208
15.
go back to reference Courville A, Bergstra J, Bengio Y (2011) A spike and slab restricted Boltzmann machine. In: Proceedings of the fourteenth international conference on artificial intelligence and statistics, pp 233–241 Courville A, Bergstra J, Bengio Y (2011) A spike and slab restricted Boltzmann machine. In: Proceedings of the fourteenth international conference on artificial intelligence and statistics, pp 233–241
16.
go back to reference Bengio Y, Courville A, Bergstra JS (2011) Unsupervised models of images by spike-and-slab RBMs. In: Proceedings of the 28th international conference on machine learning, pp 1145–1152 Bengio Y, Courville A, Bergstra JS (2011) Unsupervised models of images by spike-and-slab RBMs. In: Proceedings of the 28th international conference on machine learning, pp 1145–1152
17.
go back to reference Rifai S, Vincent P, Muller X, et al (2011) Contractive auto-encoders: explicit invariance during feature extraction. In: Proceedings of the 28th international conference on machine learning, pp 833–840 Rifai S, Vincent P, Muller X, et al (2011) Contractive auto-encoders: explicit invariance during feature extraction. In: Proceedings of the 28th international conference on machine learning, pp 833–840
18.
go back to reference Lin M, Chen Q, Yan S (2014) Network in network. In: Proceeding of international conference on learning representations Lin M, Chen Q, Yan S (2014) Network in network. In: Proceeding of international conference on learning representations
19.
go back to reference Ranzato MHG (2010) Modeling pixel means and covariances using factorized third-order Boltzmann machines. Proc IEEE Conf Comput Vis Patt Recogn, IEEE 119:2551–2558 Ranzato MHG (2010) Modeling pixel means and covariances using factorized third-order Boltzmann machines. Proc IEEE Conf Comput Vis Patt Recogn, IEEE 119:2551–2558
20.
go back to reference Chen D, Lv J, Zhang Y (2017) Graph regularized restricted boltzmann machine. IEEE Trans Neural Netw Learn Syst 99:91–99 Chen D, Lv J, Zhang Y (2017) Graph regularized restricted boltzmann machine. IEEE Trans Neural Netw Learn Syst 99:91–99
23.
go back to reference Vincent P, Larochelle H, Bengio Y, et al (2008) Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th international conference on machine learning, pp 1096–1103 Vincent P, Larochelle H, Bengio Y, et al (2008) Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th international conference on machine learning, pp 1096–1103
24.
go back to reference Bishop C (1995) Training with noise is equivalent to Tikhonov regularization. Neural Comput 7(1):108–116CrossRef Bishop C (1995) Training with noise is equivalent to Tikhonov regularization. Neural Comput 7(1):108–116CrossRef
25.
go back to reference Bengio Y, Yao L, Alain G, et al (2013) Generalized denoising auto-encoders as generative models. In: Proceedings of the Advances in neural information processing systems, pp 899–907 Bengio Y, Yao L, Alain G, et al (2013) Generalized denoising auto-encoders as generative models. In: Proceedings of the Advances in neural information processing systems, pp 899–907
27.
go back to reference Fischer A, Igel C (2012) An Introduction to restricted Boltzmann machines. Iberoamerican congress on pattern recognition. Springer, Berlin, pp 14–36 Fischer A, Igel C (2012) An Introduction to restricted Boltzmann machines. Iberoamerican congress on pattern recognition. Springer, Berlin, pp 14–36
32.
go back to reference Goodfellow IJ, Warde-Farley D, Lamblin P, et al (2013) Pylearn2: a machine learning research library. ArXiv preprint arXiv:1308.4214 Goodfellow IJ, Warde-Farley D, Lamblin P, et al (2013) Pylearn2: a machine learning research library. ArXiv preprint arXiv:​1308.​4214
33.
go back to reference Bergstra J, Breuleux O, Bastien F, et al (2010) Theano: a CPU and GPU math compiler in Python. In: Proceedings of 9th Python in science conference, pp. 1–7 Bergstra J, Breuleux O, Bastien F, et al (2010) Theano: a CPU and GPU math compiler in Python. In: Proceedings of 9th Python in science conference, pp. 1–7
34.
go back to reference Ba JL, Kingma DP (2015) Adam: a method for stochastic optimization. In: Proceedings of international conference on learning representations, 2015. pp 1–13 Ba JL, Kingma DP (2015) Adam: a method for stochastic optimization. In: Proceedings of international conference on learning representations, 2015. pp 1–13
35.
go back to reference Hinton GEOS, Bao K (2005) Learning causally linked Markov random fields. Proc Int Workshop Artif Intell Stat 16:128–135 Hinton GEOS, Bao K (2005) Learning causally linked Markov random fields. Proc Int Workshop Artif Intell Stat 16:128–135
37.
go back to reference Poultney C, Chopra S, Cun YL (2007) Efficient learning of sparse representations with an energy-based model. In: Proceedings of the advances in neural information processing systems, pp 1137–1144 Poultney C, Chopra S, Cun YL (2007) Efficient learning of sparse representations with an energy-based model. In: Proceedings of the advances in neural information processing systems, pp 1137–1144
39.
go back to reference Lee H, Ekandham C, Ng AY (2008) Sparse deep belief net model for visual area V2. In: Proceedings of the advances in neural information processing systems, pp 873–880 Lee H, Ekandham C, Ng AY (2008) Sparse deep belief net model for visual area V2. In: Proceedings of the advances in neural information processing systems, pp 873–880
40.
go back to reference Huang KZ, Xu ZL, King I, Lyu MR, Campbell C (2009) Supervised self-taught learning: actively transferring knowledge from unlabeled data. In: IJCNN: 2009 international joint conference on neural networks, vols 1–6, p 481 Huang KZ, Xu ZL, King I, Lyu MR, Campbell C (2009) Supervised self-taught learning: actively transferring knowledge from unlabeled data. In: IJCNN: 2009 international joint conference on neural networks, vols 1–6, p 481
42.
go back to reference Sohn K, Jung DY, Lee H, Hero AO (2011) efficient learning of sparse, distributed, convolutional feature representations for object recognition. In: 2011 IEEE international conference on computer vision (ICCV), pp 2643–2650 Sohn K, Jung DY, Lee H, Hero AO (2011) efficient learning of sparse, distributed, convolutional feature representations for object recognition. In: 2011 IEEE international conference on computer vision (ICCV), pp 2643–2650
46.
go back to reference Ian Goodfellow DW-F, Mirza Mehdi, Courville Aaron, Bengio Yoshua (2013) Maxout networks. PMLR 28(3):1319–1327 Ian Goodfellow DW-F, Mirza Mehdi, Courville Aaron, Bengio Yoshua (2013) Maxout networks. PMLR 28(3):1319–1327
47.
go back to reference Marijn F Stollenga JM, Gomez F, Schmidhuber J (2014) Deep networks with internal selective attention through feedback connections. In: Advances in neural information processing systems, pp 3545–3553 Marijn F Stollenga JM, Gomez F, Schmidhuber J (2014) Deep networks with internal selective attention through feedback connections. In: Advances in neural information processing systems, pp 3545–3553
48.
go back to reference Lee CY, Xie S, Gallagher P, Zhang Z, Tu Z (2015) Deeply-supervised nets. In: AISTATS, pp 562–570 Lee CY, Xie S, Gallagher P, Zhang Z, Tu Z (2015) Deeply-supervised nets. In: AISTATS, pp 562–570
49.
go back to reference van der Maaten L, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res 9:2579–2605MATH van der Maaten L, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res 9:2579–2605MATH
50.
go back to reference Larochelle H, Erhen D, Courville A, et al (2007) An empirical evaluation of deep architectures on problems with many factors of variation. In: Proceedings of the 24th international conference on Machine learning, pp 473–480 Larochelle H, Erhen D, Courville A, et al (2007) An empirical evaluation of deep architectures on problems with many factors of variation. In: Proceedings of the 24th international conference on Machine learning, pp 473–480
51.
go back to reference Nair V, Hinton G (2009) Implicit mixtures of restricted Boltzmann machines. In: Proceedings of the advances in neural information processing systems, pp 1145–1152 Nair V, Hinton G (2009) Implicit mixtures of restricted Boltzmann machines. In: Proceedings of the advances in neural information processing systems, pp 1145–1152
52.
go back to reference Larochelle H, Bengio Y (2008) Classification using discriminative restricted Boltzmann machines. In: Proceedings of international conference on machine learning, pp 536–543 Larochelle H, Bengio Y (2008) Classification using discriminative restricted Boltzmann machines. In: Proceedings of international conference on machine learning, pp 536–543
53.
go back to reference Kihyuk Sohn GZ, Lee Chansoo, Lee Honglak (2013) Learning and selecting features jointly with point-wise gated Boltzmann machines. Proc Int Conf Mach Learn 28(2):217–225 Kihyuk Sohn GZ, Lee Chansoo, Lee Honglak (2013) Learning and selecting features jointly with point-wise gated Boltzmann machines. Proc Int Conf Mach Learn 28(2):217–225
55.
go back to reference Zöhrer M, Pernkopf F (2014) General stochastic networks for classification. In: Proceedings of the advances in neural information processing systems, pp 2015–2023 Zöhrer M, Pernkopf F (2014) General stochastic networks for classification. In: Proceedings of the advances in neural information processing systems, pp 2015–2023
Metadata
Title
Contractive Slab and Spike Convolutional Deep Belief Network
Authors
Haibo Wang
Xiaojun Bi
Publication date
09-08-2018
Publisher
Springer US
Published in
Neural Processing Letters / Issue 3/2019
Print ISSN: 1370-4621
Electronic ISSN: 1573-773X
DOI
https://doi.org/10.1007/s11063-018-9897-2

Other articles of this Issue 3/2019

Neural Processing Letters 3/2019 Go to the issue