Skip to main content
Top
Published in:
Cover of the book

2021 | OriginalPaper | Chapter

Contrastive Representations for Continual Learning of Fine-Grained Histology Images

Authors : Tapabrata Chakraborti, Fergus Gleeson, Jens Rittscher

Published in: Machine Learning in Medical Imaging

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We show how a simple autoencoder based deep network with a contrastive loss can effectively learn representations in a continual/incremental manner with limited labelling. This is of particular interest to the biomedical imaging research community, for whom the visual task is often a binary decision (healthy vs. disease) with limited quantity data and costly labelling. For such applications, the proposed method provides a light-weight option of 1) representing patterns with relatively few training samples using a novel collaborative contrastive loss function 2) update the autoencoder based deep network in an unsupervised fashion for continual learning for new incoming data. We overcome the drawbacks of existing methods through planned technical design, and demonstrate the efficacy of the proposed method on three histology image classification tasks (lung, colon, breast cancer) with SOTA results.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Liu, X., et al.: A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis. Lancet Dig. Health 1(6), 271–297 (2019) Liu, X., et al.: A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis. Lancet Dig. Health 1(6), 271–297 (2019)
4.
go back to reference Bhalgat, Y., Shah, M., Awate, S.: Annotation-cost Minimization for Medical Image Segmentation using Suggestive Mixed Supervision Fully Convolutional Networks. arXiv:​1812.​11302 (2018) Bhalgat, Y., Shah, M., Awate, S.: Annotation-cost Minimization for Medical Image Segmentation using Suggestive Mixed Supervision Fully Convolutional Networks. arXiv:​1812.​11302 (2018)
5.
go back to reference Ye, M., Zhang, X., Yuen, P.C., Chang, S.-F.: Unsupervised embedding learning via invariant and spreading instance feature. In: Proc, CVPR (2019) Ye, M., Zhang, X., Yuen, P.C., Chang, S.-F.: Unsupervised embedding learning via invariant and spreading instance feature. In: Proc, CVPR (2019)
6.
go back to reference Zhuang, C., Zhai, A.L., Yamins, D.: Local aggregation for unsupervised learning of visual embeddings. In Proc, ICCV (2019) Zhuang, C., Zhai, A.L., Yamins, D.: Local aggregation for unsupervised learning of visual embeddings. In Proc, ICCV (2019)
7.
go back to reference Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an invariant mapping. In Proc, CVPR (2006) Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an invariant mapping. In Proc, CVPR (2006)
9.
go back to reference Gutmann, M., Hyvarinen, A.: Noise-contrastive estimation: A new estimation principle for unnormalized statistical models. In Proc, AISTATS (2010) Gutmann, M., Hyvarinen, A.: Noise-contrastive estimation: A new estimation principle for unnormalized statistical models. In Proc, AISTATS (2010)
10.
go back to reference Hjelm, R.D., Fedorov, A., Marchildon, S.L., Grewal, K., Trischler, A., Bengio, Y.: Learning deep representations by mutual information estimation and maximization. In Proc, ICLR (2019) Hjelm, R.D., Fedorov, A., Marchildon, S.L., Grewal, K., Trischler, A., Bengio, Y.: Learning deep representations by mutual information estimation and maximization. In Proc, ICLR (2019)
11.
12.
go back to reference Wu, Z., Xiong, Y., Yu, S., Lin, D.: Unsupervised feature learning via non-parametric instance discrimination. In Proc, CVPR (2018) Wu, Z., Xiong, Y., Yu, S., Lin, D.: Unsupervised feature learning via non-parametric instance discrimination. In Proc, CVPR (2018)
13.
go back to reference He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum Contrast for Unsupervised Visual Representation Learning. In Proc, CVPR (2020) He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum Contrast for Unsupervised Visual Representation Learning. In Proc, CVPR (2020)
14.
go back to reference Zhang, L., Yang, M., Feng, X.: Sparse representation or collaborative representation: Which helps face recognition? In Proc, ICCV (2011) Zhang, L., Yang, M., Feng, X.: Sparse representation or collaborative representation: Which helps face recognition? In Proc, ICCV (2011)
15.
go back to reference Chakraborti, T., McCane, B., Mills, S., Pal, U.: A Generalised Formulation for Collaborative Representation of Image Patches (GP-CRC). In Proc, BMVC (2017) Chakraborti, T., McCane, B., Mills, S., Pal, U.: A Generalised Formulation for Collaborative Representation of Image Patches (GP-CRC). In Proc, BMVC (2017)
16.
go back to reference Aresta, G., et al.: BACH: Grand challenge on breast cancer histology images. Medical Image Analysis 56, 122–139 (2019) Aresta, G., et al.: BACH: Grand challenge on breast cancer histology images. Medical Image Analysis 56, 122–139 (2019)
17.
go back to reference Borkowski, A.A., Bui, M.M., Thomas, L.B., Wilson, C.P., DeLand, L.A., Mastorides, S.M.: Lung and Colon Cancer Histopathological Image Dataset (LC25000). arXiv:​1912.​12142 (2019) Borkowski, A.A., Bui, M.M., Thomas, L.B., Wilson, C.P., DeLand, L.A., Mastorides, S.M.: Lung and Colon Cancer Histopathological Image Dataset (LC25000). arXiv:​1912.​12142 (2019)
18.
go back to reference Henaff, O.J., Razavi, A., Doersch, C., Eslami, S.M., Oord, A.: Data-efficient image recognition with contrastive predictive coding. arXiv:​1905.​09272 (2019) Henaff, O.J., Razavi, A., Doersch, C., Eslami, S.M., Oord, A.: Data-efficient image recognition with contrastive predictive coding. arXiv:​1905.​09272 (2019)
Metadata
Title
Contrastive Representations for Continual Learning of Fine-Grained Histology Images
Authors
Tapabrata Chakraborti
Fergus Gleeson
Jens Rittscher
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-87589-3_1

Premium Partner