Skip to main content
Top

2015 | OriginalPaper | Chapter

3. Contribution of Agriculture Sector to Climate Change

Authors : Sangeeta Lenka, N. K. Lenka, Veerasamy Sejian, M. Mohanty

Published in: Climate Change Impact on Livestock: Adaptation and Mitigation

Publisher: Springer India

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Agriculture sector is a potential contributor to the total green house gas (GHG) emission with a share of about 24 % (IPCC, AR5 to be released) of the total anthropogenic emission, and a growing global population means that agricultural production will remain high if food demands are to be met. At the same time, there is a huge carbon sink potential in this sector including land use, land-use change, and forestry sector. For over four decades, evidence has been growing that the accumulation of GHGs in the upper atmosphere is leading to changes in climate, particularly increases in temperature. Average global surface temperature increased by 0.6 ± 0.2 °C over the twentieth century and is projected to rise by 0.3–2.5 °C in the next 50 years and 1.4–5.8 °C in the next century (IPCC, Climate change: synthesis report; summary for policymakers. Available: http://​www.​ipcc.​ch/​pdf/​assessment-report/​ar4/​syr/​ar4_​syr_​spm.​pdf, 2007). In the recent report of IPCC AR5 (yet to be released), it has been observed that warming will continue beyond 2100 under all representative concentration pathways (RCP) scenarios except RCP 2.6. Temperature increase is likely to exceed 1.5 °C relative to 1850–1900 for all RCP scenarios except RCP 2.6. It is likely to exceed 2 °C for RCP 6.0 and RCP 8.5 (Pachauri, Conclusions of the IPCC working group I fifth assessment report, AR4, SREX and SRREN, Warsaw, 11 November 2013). Agriculture is a potential source and sink to GHGs in the atmosphere. It is a source for three primary GHGs: CO2, N2O, and CH4 and sink for atmospheric CO2. The two broad anthropogenic sources of GHG emission from agriculture are the energy use in agriculture (manufacture and use of agricultural inputs and farm machinery) and the management of agricultural land. Mitigation methods to reduce emissions from this sector are thus required, along with identification and quantification of emission sources, so that the agricultural community can act and measure its progress. This chapter focuses on different sources of GHG emission from agriculture sector and their key mitigation strategies.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Bell MJ, Cloy JM, Rees RM (2014) The true extent of agriculture’s contribution to national GHG emissions. Environ Sci Policy 39:1–12CrossRef Bell MJ, Cloy JM, Rees RM (2014) The true extent of agriculture’s contribution to national GHG emissions. Environ Sci Policy 39:1–12CrossRef
go back to reference Bellarby J, Tirado R, Leip A, Weiss F, Lesschen JP, Smith P (2013) Livestock GHG emissions and mitigation potential in Europe. Glob Chang Biol 19:3–18CrossRef Bellarby J, Tirado R, Leip A, Weiss F, Lesschen JP, Smith P (2013) Livestock GHG emissions and mitigation potential in Europe. Glob Chang Biol 19:3–18CrossRef
go back to reference Blandford D, Gaasland I, Vardal E (2014) The trade-off between food production and GHG mitigation in Norwegian agriculture. Agric Ecosyst Environ 184:59–66CrossRef Blandford D, Gaasland I, Vardal E (2014) The trade-off between food production and GHG mitigation in Norwegian agriculture. Agric Ecosyst Environ 184:59–66CrossRef
go back to reference Chhabra A, Manjunath KR, Panigrahy S, Parihar JS (2009) Spatial pattern of methane emissions from Indian livestock. Curr Sci 96(5):683–689 Chhabra A, Manjunath KR, Panigrahy S, Parihar JS (2009) Spatial pattern of methane emissions from Indian livestock. Curr Sci 96(5):683–689
go back to reference Crosson P, Shalloo L, O’Brien D, Lanigan GJ, Foley PA, Boland TM, Kenny DA (2011) A review of whole farm systems models of GHG emissions from beef and dairy cattle production systems. Anim Feed Sci Technol 166/167:29–45CrossRef Crosson P, Shalloo L, O’Brien D, Lanigan GJ, Foley PA, Boland TM, Kenny DA (2011) A review of whole farm systems models of GHG emissions from beef and dairy cattle production systems. Anim Feed Sci Technol 166/167:29–45CrossRef
go back to reference Dinuccio E, Balsari P, Berg W (2008) GHG emissions during the storage of rough pig slurry and the fractions obtained by mechanical separation. Aust J Exp Agric 48:93–95CrossRef Dinuccio E, Balsari P, Berg W (2008) GHG emissions during the storage of rough pig slurry and the fractions obtained by mechanical separation. Aust J Exp Agric 48:93–95CrossRef
go back to reference Galloway JN, Burke M, Bradford GE, Naylor R, Falcon W, Chapagain AK, Gaskell JC, McCullough E, Mooney HA, Oleson KLL, Steinfeld H, Wassenaar T, Smil V (2007) International trade in meat: the tip of the pork chop. Ambio 36:622–629CrossRef Galloway JN, Burke M, Bradford GE, Naylor R, Falcon W, Chapagain AK, Gaskell JC, McCullough E, Mooney HA, Oleson KLL, Steinfeld H, Wassenaar T, Smil V (2007) International trade in meat: the tip of the pork chop. Ambio 36:622–629CrossRef
go back to reference Johnson KA, Johnson DE (1995) Methane emissions from cattle. J Anim Sci 73:2483–2492 Johnson KA, Johnson DE (1995) Methane emissions from cattle. J Anim Sci 73:2483–2492
go back to reference Kongshaug G (1998) Energy consumption and GHG emissions in fertilizer production. IFA technical conference, Marrakech, p 18 Kongshaug G (1998) Energy consumption and GHG emissions in fertilizer production. IFA technical conference, Marrakech, p 18
go back to reference Lenka S, Lenka NK, Kundu S, Subba Rao A (2013) Climate change and natural resource management. New India Publishing Agency, New Delhi-88, p 359 Lenka S, Lenka NK, Kundu S, Subba Rao A (2013) Climate change and natural resource management. New India Publishing Agency, New Delhi-88, p 359
go back to reference Paustian K, Antle M, Sheehan J, Eldor P (2006) Agriculture’s role in greenhouse gas mitigation. Pew Center on Global Climate Change, Washington, DC Paustian K, Antle M, Sheehan J, Eldor P (2006) Agriculture’s role in greenhouse gas mitigation. Pew Center on Global Climate Change, Washington, DC
go back to reference Pachauri R (2013) Conclusions of the IPCC working group I fifth assessment report, AR4, SREX and SRREN, Warsaw, 11 November 2013 Pachauri R (2013) Conclusions of the IPCC working group I fifth assessment report, AR4, SREX and SRREN, Warsaw, 11 November 2013
go back to reference Sejian V, Lal R, Lakritz J, Ezeji T (2011) Measurement and prediction of enteric methane emission. Int J Biometeorol 55:1–16CrossRef Sejian V, Lal R, Lakritz J, Ezeji T (2011) Measurement and prediction of enteric methane emission. Int J Biometeorol 55:1–16CrossRef
go back to reference Sejian V, Indu S, Ujor V, Ezeji T, Lakritz J, Lal R (2012) Global climate change: enteric methane reduction strategies in livestock. In: Sejian V, Naqvi SMK, Ezeji T, Lakritz J, Lal R (eds) Environmental stress and amelioration in livestock production. Springer-Verlag GMbH Publisher, Germany, Berlin, Heidelberg, pp 469–502CrossRef Sejian V, Indu S, Ujor V, Ezeji T, Lakritz J, Lal R (2012) Global climate change: enteric methane reduction strategies in livestock. In: Sejian V, Naqvi SMK, Ezeji T, Lakritz J, Lal R (eds) Environmental stress and amelioration in livestock production. Springer-Verlag GMbH Publisher, Germany, Berlin, Heidelberg, pp 469–502CrossRef
go back to reference Sharma SK, Choudhary A, Sarkar P, Biswas S, Singh A, Dadhich PK, Singh AK, Majumdar S, Bhatia A, Mohini M, Kumar R, Jha CS, Murthy MSR, Ravindranath NH, Bhattacharaya JK, Karthik M, Bhattacharya S, Chauhan R (2011) Green house gas inventory estimates for India. Curr Sci 101:405–415 Sharma SK, Choudhary A, Sarkar P, Biswas S, Singh A, Dadhich PK, Singh AK, Majumdar S, Bhatia A, Mohini M, Kumar R, Jha CS, Murthy MSR, Ravindranath NH, Bhattacharaya JK, Karthik M, Bhattacharya S, Chauhan R (2011) Green house gas inventory estimates for India. Curr Sci 101:405–415
go back to reference Swamy M, Bhattacharya S (2011) Budgeting anthropogenic green house gas emission from Indian livestock’s using country-specific emission coefficients. Curr Sci 91:1340–1353 Swamy M, Bhattacharya S (2011) Budgeting anthropogenic green house gas emission from Indian livestock’s using country-specific emission coefficients. Curr Sci 91:1340–1353
Metadata
Title
Contribution of Agriculture Sector to Climate Change
Authors
Sangeeta Lenka
N. K. Lenka
Veerasamy Sejian
M. Mohanty
Copyright Year
2015
Publisher
Springer India
DOI
https://doi.org/10.1007/978-81-322-2265-1_3