Skip to main content
Top

2018 | OriginalPaper | Chapter

Contribution of the Cogeneration Systems to Environment and Sustainability

Authors : Çomakli Kemal, Çakir Uğur, Çokgez Kuş Ayşegül, Şahin Erol

Published in: Exergy for A Better Environment and Improved Sustainability 2

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The kind of energy that buildings need changes, like heating energy, cooling energy, electrical energy, and thermal energy for hot top water. Usually, the processes or systems that produce thermal energy emit pollutants while they produce heat because of the fossil fuels they use. A lower consumption of thermal energy will contribute not only to a reduction in the running costs but also in the reduction of pollutant emissions that contribute to the greenhouse effect and a lesser dependence of the hospital on the external power supply. Cogeneration or CHP (combined heat and power) is the system that produces power and usable heat simultaneously. Combined production of mechanical or electrical and thermal energy using a simple energy source, such as oil, coal, natural or liquefied gas, biomass, or the sun, affords remarkable energy savings and frequently makes it possible to operate with greater efficiency when compared to a system producing heat and power separately. Because of the life standard of humanity in new age, energy sources must be continually improved and updated. For this reason, the installation of a system for the simultaneous generation of electrical, heating, and cooling energy would be one of the best solutions if we want to have qualified energy and reduce investment and operating costs and meet ecological requirements. This study aims to bring out the contributions of cogeneration systems to the environment and sustainability by saving the energy and reducing the emissions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abusoglu, A., Kanoglu, M.: Exergetic and thermodynamic analyses of diesel engine powered cogeneration. Part 1. Formulations. Appl. Therm. Eng. 29, 234–241 (2009)CrossRef Abusoglu, A., Kanoglu, M.: Exergetic and thermodynamic analyses of diesel engine powered cogeneration. Part 1. Formulations. Appl. Therm. Eng. 29, 234–241 (2009)CrossRef
go back to reference Bazilian Frederik Leenders, M.D., Van der Ree, B.G.C., Prasad, D.: Photovoltaic cogeneration in the built environment. Sol. Energy. 71(1), 57–69 (2001)CrossRef Bazilian Frederik Leenders, M.D., Van der Ree, B.G.C., Prasad, D.: Photovoltaic cogeneration in the built environment. Sol. Energy. 71(1), 57–69 (2001)CrossRef
go back to reference Buoro, D., Pinamonti, P., Reini, M.: Optimization of a distributed cogeneration system with solar district heating. Appl. Energy. 124(2014), 298–308 (2014)CrossRef Buoro, D., Pinamonti, P., Reini, M.: Optimization of a distributed cogeneration system with solar district heating. Appl. Energy. 124(2014), 298–308 (2014)CrossRef
go back to reference Burer, M., Tanaka, K., Favrat, D., Yamada, K.: Multi-criteria optimization of a district cogeneration plant integrating a solid oxide fuel cell–gas turbine combined cycle, heat pumps and chillers. Energy. 28, 497–518 (2003)CrossRef Burer, M., Tanaka, K., Favrat, D., Yamada, K.: Multi-criteria optimization of a district cogeneration plant integrating a solid oxide fuel cell–gas turbine combined cycle, heat pumps and chillers. Energy. 28, 497–518 (2003)CrossRef
go back to reference Cakir, U., Comakli, K., Yuksel, F.: The role of cogeneration systems in sustainability of energy. Energy Convers. Manag. 63, 196–202 (2012)CrossRef Cakir, U., Comakli, K., Yuksel, F.: The role of cogeneration systems in sustainability of energy. Energy Convers. Manag. 63, 196–202 (2012)CrossRef
go back to reference Can, F.O., Celik, N., Dagtekin, İ.: Energetic and exergetic–economic analyses of a cogeneration ther-mic power plant in Turkey. Int. Commun. Heat Mass Transfer. 36, 1044–1049 (2009)CrossRef Can, F.O., Celik, N., Dagtekin, İ.: Energetic and exergetic–economic analyses of a cogeneration ther-mic power plant in Turkey. Int. Commun. Heat Mass Transfer. 36, 1044–1049 (2009)CrossRef
go back to reference Delgado, M.S., Bernad, E.C., Palacín, J.I.G.: Cogeneration process modelling in a paper factory. Procedia Eng. 63, 966–972 (2013)CrossRef Delgado, M.S., Bernad, E.C., Palacín, J.I.G.: Cogeneration process modelling in a paper factory. Procedia Eng. 63, 966–972 (2013)CrossRef
go back to reference Gariglio, M., De Benedictisi, F., Calì, M., Orsello, G.: Experimental activity on two tubular solid oxide fuel cell cogeneration plants in a real industrial environment international. J. Hydrogen Energy. 34(10), 4661–4668 (2009)CrossRef Gariglio, M., De Benedictisi, F., Calì, M., Orsello, G.: Experimental activity on two tubular solid oxide fuel cell cogeneration plants in a real industrial environment international. J. Hydrogen Energy. 34(10), 4661–4668 (2009)CrossRef
go back to reference Goktun, S.: Solar powered cogeneration system for air conditioning andrefrigeration. Energy. 24, 971–977 (1999)CrossRef Goktun, S.: Solar powered cogeneration system for air conditioning andrefrigeration. Energy. 24, 971–977 (1999)CrossRef
go back to reference Hasan Nia, M., Abbas Nejad, A., Goudarzi, A.M., Valizadeh, M., Samadian, P.: Cogeneration solar system using thermoelectric module and fresnel lens. Energy Convers. Manag. 84, 305–310 (2014)CrossRef Hasan Nia, M., Abbas Nejad, A., Goudarzi, A.M., Valizadeh, M., Samadian, P.: Cogeneration solar system using thermoelectric module and fresnel lens. Energy Convers. Manag. 84, 305–310 (2014)CrossRef
go back to reference Hollick, J.C.: Solar cogeneration panels. Renew. Energy. 15, 195–200 (1998)CrossRef Hollick, J.C.: Solar cogeneration panels. Renew. Energy. 15, 195–200 (1998)CrossRef
go back to reference June Wu, Y., Rosen, M.A.: Assessing and optimizing the economic and environmental impacts of cogeneration/district energy systems using an energy equilibrium model. Appl. Energy. 62(3), 141–154 (1999)CrossRef June Wu, Y., Rosen, M.A.: Assessing and optimizing the economic and environmental impacts of cogeneration/district energy systems using an energy equilibrium model. Appl. Energy. 62(3), 141–154 (1999)CrossRef
go back to reference Lindenberger, D., Bruckner, T., Groscurth, H.-M., Kummel, R.: Optimization of solar district heating systems: seasonal storage heat pumps and cogeneration. Energy. 25, 591 (2000)CrossRef Lindenberger, D., Bruckner, T., Groscurth, H.-M., Kummel, R.: Optimization of solar district heating systems: seasonal storage heat pumps and cogeneration. Energy. 25, 591 (2000)CrossRef
go back to reference Madlener, R., Bachhiesl, M.: Socio-economic drivers of large urban biomasscogeneration sustainable energy supply for Austria’s capital Vienna. Energy Policy. 35, 1075–1087 (2007)CrossRef Madlener, R., Bachhiesl, M.: Socio-economic drivers of large urban biomasscogeneration sustainable energy supply for Austria’s capital Vienna. Energy Policy. 35, 1075–1087 (2007)CrossRef
go back to reference Malinowska, W., Malinowski, L.: Parametric study of exergetic efficiency of a small-scale cogeneration plant incorporating a heat pump. Appl. Therm. Eng. 23, 459–472 (2003)CrossRef Malinowska, W., Malinowski, L.: Parametric study of exergetic efficiency of a small-scale cogeneration plant incorporating a heat pump. Appl. Therm. Eng. 23, 459–472 (2003)CrossRef
go back to reference Mancarella, P.: Cogeneration systems with electric heat pumps: energy-shifting properties and equivalent plant modeling. Energy Convers. Manage. 50, 1991–1999 (2009)CrossRef Mancarella, P.: Cogeneration systems with electric heat pumps: energy-shifting properties and equivalent plant modeling. Energy Convers. Manage. 50, 1991–1999 (2009)CrossRef
go back to reference Pehnt, M.: Environmental impacts of distributed energy systems-the case of micro cogeneration. Environ. Sci. Pol. 11, 25–37 (2008)CrossRef Pehnt, M.: Environmental impacts of distributed energy systems-the case of micro cogeneration. Environ. Sci. Pol. 11, 25–37 (2008)CrossRef
go back to reference Rafael Galvão, J., Leitão Augusto, S., Silva Malheiro, S., Gaio Manuel, T.: Cogeneration supply by bio-energy for a sustainable hotel buildingmanagement system. Fuel Process. Technol. 92, 284–289 (2011)CrossRef Rafael Galvão, J., Leitão Augusto, S., Silva Malheiro, S., Gaio Manuel, T.: Cogeneration supply by bio-energy for a sustainable hotel buildingmanagement system. Fuel Process. Technol. 92, 284–289 (2011)CrossRef
go back to reference Rosen, M.A.: Allocating carbon dioxide emissions from cogeneration systems: descriptions of selected output-based methods. J. Clean. Prod. 16(2), 171–177 (2008)CrossRef Rosen, M.A.: Allocating carbon dioxide emissions from cogeneration systems: descriptions of selected output-based methods. J. Clean. Prod. 16(2), 171–177 (2008)CrossRef
go back to reference Smithers, J.: Review of sugar cane trash recovery systems for energy cogeneration in South Africa. Renew. Sust. Energ. Rev. 32(2014), 915–925 (2014)CrossRef Smithers, J.: Review of sugar cane trash recovery systems for energy cogeneration in South Africa. Renew. Sust. Energ. Rev. 32(2014), 915–925 (2014)CrossRef
go back to reference Soltani, R., Mohammadzadeh Keleshtery, P., Vahdati, M., KhoshgoftarManesh, M.H., Rosen, M.A., Amidpour, M.: Multi-objective optimization of a solar-hybrid cogeneration cycle: application to CGAM problem. Energy Convers. Manag. 81, 60–71 (2014)CrossRef Soltani, R., Mohammadzadeh Keleshtery, P., Vahdati, M., KhoshgoftarManesh, M.H., Rosen, M.A., Amidpour, M.: Multi-objective optimization of a solar-hybrid cogeneration cycle: application to CGAM problem. Energy Convers. Manag. 81, 60–71 (2014)CrossRef
go back to reference Thilak Raj, N., Iniyan, S., Goic, R.: A review of renewable energy based cogeneration technologies. Renew. Sust. Energy. Rev. 15(8), 3640 (2011)CrossRef Thilak Raj, N., Iniyan, S., Goic, R.: A review of renewable energy based cogeneration technologies. Renew. Sust. Energy. Rev. 15(8), 3640 (2011)CrossRef
Metadata
Title
Contribution of the Cogeneration Systems to Environment and Sustainability
Authors
Çomakli Kemal
Çakir Uğur
Çokgez Kuş Ayşegül
Şahin Erol
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-62575-1_56