Skip to main content
Top

2017 | OriginalPaper | Chapter

Contribution to the Non-Lagrangian Formulation of Geotechnical and Geomechanical Processes

Authors : Daniel Aubram, Frank Rackwitz, Stavros A. Savidis

Published in: Holistic Simulation of Geotechnical Installation Processes

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Numerical simulations of geomechanical and geotechnical processes, such as vibro-injection pile installation, require suitable algorithms and sufficiently realistic models. These models have to account for large deformations, the evolution of material interfaces including free surfaces and contact interfaces, for granular material behavior in different flow regimes as well as for the interaction of the different materials and phases. Although the traditional Lagrangian formulation is well-suited to handling complex material behavior and maintaining material interfaces, it generally cannot represent large deformation, shear and vorticity. This is because in Lagrangian numerical methods the storage points (nodes resp. material points) move with the local material velocity, which may cause mesh tangling resp. clustering of points. The present contribution addresses the development of models for geotechnical and geomechanical processes by utilizing Eulerian and Arbitrary Lagrangian-Eulerian (ALE) formulations. Such non-Lagrangian viewpoints introduce additional difficulties which are discussed in detail. In particular, we investigate how to track interfaces and to model interaction of different materials with respect to an arbitrarily moving control volume, and how to validate non-Lagrangian numerical models by small-scale experimental tests.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Abadie, S., Morichon, D., Grilli, S., Glockner, S.: Numerical simulation of waves generated by landslides using a multiple-fluid Navier-Stokes model. Coast. Eng. 57, 779–794 (2010)CrossRef Abadie, S., Morichon, D., Grilli, S., Glockner, S.: Numerical simulation of waves generated by landslides using a multiple-fluid Navier-Stokes model. Coast. Eng. 57, 779–794 (2010)CrossRef
2.
go back to reference Achanta, S., Cushman, J.H., Okos, M.R.: On multicomponent, multiphase thermomechanics with interfaces. Int. J. Eng. Sci. 32(11), 1717–1738 (1994)MATHCrossRef Achanta, S., Cushman, J.H., Okos, M.R.: On multicomponent, multiphase thermomechanics with interfaces. Int. J. Eng. Sci. 32(11), 1717–1738 (1994)MATHCrossRef
3.
go back to reference Addessio, F.L., Baumgardner, J.R., Dukowicz, J.K., Johnson, N.L., Kashiwa, B.A., Rauenzahn, R.M., Zemach, C.: CAVEAT: a computer code for fluid dynamics problems with large distortion and internal slip. Report LA-10613-MS-REV. 1 (revised edition), Los Alamos National Laboratory, Los Alamos, USA (1990) Addessio, F.L., Baumgardner, J.R., Dukowicz, J.K., Johnson, N.L., Kashiwa, B.A., Rauenzahn, R.M., Zemach, C.: CAVEAT: a computer code for fluid dynamics problems with large distortion and internal slip. Report LA-10613-MS-REV. 1 (revised edition), Los Alamos National Laboratory, Los Alamos, USA (1990)
4.
go back to reference Adrian, R.J.: Particle-imaging techniques for experimental fluid mechanics. J. Annu. Rev. Fluid Mech. 23, 261–304 (1991)CrossRef Adrian, R.J.: Particle-imaging techniques for experimental fluid mechanics. J. Annu. Rev. Fluid Mech. 23, 261–304 (1991)CrossRef
5.
go back to reference Ancey, C., Coussot, P., Evesque, P.: A theoretical framework for granular suspensions in a steady simple shear flow. J. Rheol. 43(6), 1673–1699 (1999)CrossRef Ancey, C., Coussot, P., Evesque, P.: A theoretical framework for granular suspensions in a steady simple shear flow. J. Rheol. 43(6), 1673–1699 (1999)CrossRef
6.
go back to reference Ancey, C., Evesque, P.: Frictional-collisional regime for granular suspension flows down an inclined channel. Phys. Rev. E 62(6), 8349–8360 (2000)CrossRef Ancey, C., Evesque, P.: Frictional-collisional regime for granular suspension flows down an inclined channel. Phys. Rev. E 62(6), 8349–8360 (2000)CrossRef
7.
go back to reference Ancey, C.: Dry granular flows down an inclined channel: experimental investigations on the frictional-collisional regime. Phys. Rev. E 65, 011304 (2001)CrossRef Ancey, C.: Dry granular flows down an inclined channel: experimental investigations on the frictional-collisional regime. Phys. Rev. E 65, 011304 (2001)CrossRef
8.
go back to reference Ancey, C.: Plasticity and geophysical flows: a review. J. Nonnewton. Fluid Mech. 142, 4–35 (2007)MATHCrossRef Ancey, C.: Plasticity and geophysical flows: a review. J. Nonnewton. Fluid Mech. 142, 4–35 (2007)MATHCrossRef
9.
go back to reference Anderson, K.G., Jackson, R.: A comparison of the solutions of some proposed equations of motion of granular materials for fully developed flow down inclined planes. Ind. Eng. Chem. Fundam. 241, 145–168 (1992) Anderson, K.G., Jackson, R.: A comparison of the solutions of some proposed equations of motion of granular materials for fully developed flow down inclined planes. Ind. Eng. Chem. Fundam. 241, 145–168 (1992)
10.
go back to reference Arbogast, T., Douglas, J., Hornung, U.: Derivation of the double porosity model of single phase flow via homogenization theory. SIAM J. Math. Anal. 21(4), 823–836 (1990)MathSciNetMATHCrossRef Arbogast, T., Douglas, J., Hornung, U.: Derivation of the double porosity model of single phase flow via homogenization theory. SIAM J. Math. Anal. 21(4), 823–836 (1990)MathSciNetMATHCrossRef
11.
12.
go back to reference Assier-Rzadkiewicz, S., Mariotti, C., Heinrich, P.: Numerical simulation of submarine landslides and their hydraulic effects. J. Waterw. Port Coast. Ocean Eng. 123(4), 149–157 (1997)CrossRef Assier-Rzadkiewicz, S., Mariotti, C., Heinrich, P.: Numerical simulation of submarine landslides and their hydraulic effects. J. Waterw. Port Coast. Ocean Eng. 123(4), 149–157 (1997)CrossRef
18.
go back to reference Aubram, D.: A multi-material Eulerian method for large deformation and free surface flow of geomaterials (in preparation) Aubram, D.: A multi-material Eulerian method for large deformation and free surface flow of geomaterials (in preparation)
19.
go back to reference Aubram, D., Rackwitz, F., Savidis, S.A.: An ALE finite element method for cohesionless soil at large strains: computational aspects and applications. In: Benz, T., Nordal, S. (eds.) Proceedings 7th European Conference on Numerical Methods in Geotechnical Engineering (NUMGE), pp. 245–250. CRC Press, Boca Raton (2010) Aubram, D., Rackwitz, F., Savidis, S.A.: An ALE finite element method for cohesionless soil at large strains: computational aspects and applications. In: Benz, T., Nordal, S. (eds.) Proceedings 7th European Conference on Numerical Methods in Geotechnical Engineering (NUMGE), pp. 245–250. CRC Press, Boca Raton (2010)
21.
go back to reference Aubram, D., Rackwitz, F., Savidis, S.A.: Vibro-injection pile installation in sand: part i—interpretation as multi-material flow. In: Triantafyllidis, T. (ed.) Holistic Simulation of Geotechnical Installation Processes. LNACM, vol. 77, pp. 73–102. Springer, Heidelberg (2015). doi:10.1007/978-3-319-18170-7_5 CrossRef Aubram, D., Rackwitz, F., Savidis, S.A.: Vibro-injection pile installation in sand: part i—interpretation as multi-material flow. In: Triantafyllidis, T. (ed.) Holistic Simulation of Geotechnical Installation Processes. LNACM, vol. 77, pp. 73–102. Springer, Heidelberg (2015). doi:10.​1007/​978-3-319-18170-7_​5 CrossRef
22.
go back to reference Aubram, D., Savidis, S.A., Rackwitz, F.: Theory and numerical modeling of geomechanical multi-material flow. In: Triantafyllidis, T. (ed.) Holistic Simulation of Geotechnical Installation Processes. LNACM, vol. 80, pp. 187–229. Springer, Heidelberg (2016). doi:10.1007/978-3-319-23159-4_10 CrossRef Aubram, D., Savidis, S.A., Rackwitz, F.: Theory and numerical modeling of geomechanical multi-material flow. In: Triantafyllidis, T. (ed.) Holistic Simulation of Geotechnical Installation Processes. LNACM, vol. 80, pp. 187–229. Springer, Heidelberg (2016). doi:10.​1007/​978-3-319-23159-4_​10 CrossRef
23.
go back to reference Bagnold, R.A.: Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proc. R. Soc. Lond. Ser. A 225, 49–63 (1954)CrossRef Bagnold, R.A.: Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proc. R. Soc. Lond. Ser. A 225, 49–63 (1954)CrossRef
24.
25.
go back to reference Bardenhagen, S.G., Brackbill, J.U., Sulsky, D.: The material-point method for granular materials. Comput. Methods Appl. Mech. Eng. 187, 529–541 (2000)MATHCrossRef Bardenhagen, S.G., Brackbill, J.U., Sulsky, D.: The material-point method for granular materials. Comput. Methods Appl. Mech. Eng. 187, 529–541 (2000)MATHCrossRef
26.
27.
go back to reference Belytschko, T., Liu, W.K., Moran, D.: Nonlinear Finite Elements for Continua and Structures. Wiley, Chichester (2000)MATH Belytschko, T., Liu, W.K., Moran, D.: Nonlinear Finite Elements for Continua and Structures. Wiley, Chichester (2000)MATH
28.
go back to reference Bennethum, L.S.: Compressibility moduli for porous materials incorporating volume fraction. J. Eng. Mech. 132, 1205–1214 (2006)CrossRef Bennethum, L.S.: Compressibility moduli for porous materials incorporating volume fraction. J. Eng. Mech. 132, 1205–1214 (2006)CrossRef
29.
go back to reference Bennethum, L.S.: Theory of flow and deformation of swelling porous materials at the macroscale. Comput. Geotech. 34, 267–278 (2007)CrossRef Bennethum, L.S.: Theory of flow and deformation of swelling porous materials at the macroscale. Comput. Geotech. 34, 267–278 (2007)CrossRef
30.
go back to reference Bennethum, L.S., Cushman, J.H.: Multiscale, hybrid mixture theory for swelling systems-I, balance laws. Int. J. Eng. Sci. 34(2), 125–145 (1996)MathSciNetMATHCrossRef Bennethum, L.S., Cushman, J.H.: Multiscale, hybrid mixture theory for swelling systems-I, balance laws. Int. J. Eng. Sci. 34(2), 125–145 (1996)MathSciNetMATHCrossRef
31.
go back to reference Bennethum, L.S., Cushman, J.H.: Multiscale, hybrid mixture theory for swelling systems-II, constitutive theory. Int. J. Eng. Sci. 34(2), 147–169 (1996)MathSciNetMATHCrossRef Bennethum, L.S., Cushman, J.H.: Multiscale, hybrid mixture theory for swelling systems-II, constitutive theory. Int. J. Eng. Sci. 34(2), 147–169 (1996)MathSciNetMATHCrossRef
32.
33.
go back to reference Benson, D.J.: An efficient, accurate, simple ALE method for nonlinear finite element programs. Comput. Methods Appl. Mech. Eng. 72, 305–350 (1989)MATHCrossRef Benson, D.J.: An efficient, accurate, simple ALE method for nonlinear finite element programs. Comput. Methods Appl. Mech. Eng. 72, 305–350 (1989)MATHCrossRef
34.
35.
go back to reference Benson, D.J.: A multi-material Eulerian formulation for the efficient solution of impact and penetration problems. Comput. Mech. 15, 558–571 (1995)MATHCrossRef Benson, D.J.: A multi-material Eulerian formulation for the efficient solution of impact and penetration problems. Comput. Mech. 15, 558–571 (1995)MATHCrossRef
36.
go back to reference Benson, D.J.: A mixture theory for contact in multi-material Eulerian formulations. Comput. Methods Appl. Mech. Eng. 140, 59–86 (1997)MathSciNetMATHCrossRef Benson, D.J.: A mixture theory for contact in multi-material Eulerian formulations. Comput. Methods Appl. Mech. Eng. 140, 59–86 (1997)MathSciNetMATHCrossRef
37.
go back to reference Benson, D.J.: Volume of fluid interface reconstruction methods for multi-material problems. Appl. Mech. Rev. 55(2), 151–165 (2002)CrossRef Benson, D.J.: Volume of fluid interface reconstruction methods for multi-material problems. Appl. Mech. Rev. 55(2), 151–165 (2002)CrossRef
39.
40.
go back to reference Benson, D.J., Okazawa, S.: Contact in a multi-material Eulerian finite element formulation. Comput. Methods Appl. Mech. Eng. 193, 4277–4298 (2004)MATHCrossRef Benson, D.J., Okazawa, S.: Contact in a multi-material Eulerian finite element formulation. Comput. Methods Appl. Mech. Eng. 193, 4277–4298 (2004)MATHCrossRef
41.
go back to reference Beuth, L., Wieckowski, Z., Vermeer, P.A.: Solution of quasi-static large-strain problems by the material point method. Int. J. Numer. Anal. Meth. Geomech. 35, 1451–1465 (2011) Beuth, L., Wieckowski, Z., Vermeer, P.A.: Solution of quasi-static large-strain problems by the material point method. Int. J. Numer. Anal. Meth. Geomech. 35, 1451–1465 (2011)
42.
go back to reference Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941)MATHCrossRef Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941)MATHCrossRef
43.
go back to reference Biot, M.A., Willis, D.G.: The elastic coefficients of the theory of consolidation. J. Appl. Mech. 24, 594–601 (1957)MathSciNet Biot, M.A., Willis, D.G.: The elastic coefficients of the theory of consolidation. J. Appl. Mech. 24, 594–601 (1957)MathSciNet
44.
go back to reference Bouré, J.A.: Two-phase flow models: the closure issue. Multiphase Science and Technology 3(1–4), 3–30 (1987)CrossRef Bouré, J.A.: Two-phase flow models: the closure issue. Multiphase Science and Technology 3(1–4), 3–30 (1987)CrossRef
45.
go back to reference Bouré, J.A., Delhaye, J.M.: General equations and two-phase flow modeling section 1.2. In: Hetsroni, G. (ed.) Handbook of Multiphase Systems. Hemisphere Publishing Corporation (1982) Bouré, J.A., Delhaye, J.M.: General equations and two-phase flow modeling section 1.2. In: Hetsroni, G. (ed.) Handbook of Multiphase Systems. Hemisphere Publishing Corporation (1982)
46.
go back to reference Bowen, R.M.: Theory of mixtures. In: Eringen, A.C. (ed.) Continuum Physics. Vol. III: Mixtures and EM Field Theories, part I. Academic Press, New York (1976) Bowen, R.M.: Theory of mixtures. In: Eringen, A.C. (ed.) Continuum Physics. Vol. III: Mixtures and EM Field Theories, part I. Academic Press, New York (1976)
47.
go back to reference Bowen, R.M.: Incompressible porous media models by use of the theory of mixtures. Int. J. Eng. Sci. 18(9), 1129–1148 (1980)MATHCrossRef Bowen, R.M.: Incompressible porous media models by use of the theory of mixtures. Int. J. Eng. Sci. 18(9), 1129–1148 (1980)MATHCrossRef
48.
go back to reference Bowen, R.M.: Compressible porous media models by use of the theory of mixtures. Int. J. Eng. Sci. 20(6), 697–735 (1982)MATHCrossRef Bowen, R.M.: Compressible porous media models by use of the theory of mixtures. Int. J. Eng. Sci. 20(6), 697–735 (1982)MATHCrossRef
49.
go back to reference Bui, H.H., Fukagawa, R., Sako, K., Ohno, S.: Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic-plastic soil constitutive model. Int. J. Numer. Anal. Meth. Geomech. 32, 1537–1570 (2008)MATHCrossRef Bui, H.H., Fukagawa, R., Sako, K., Ohno, S.: Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic-plastic soil constitutive model. Int. J. Numer. Anal. Meth. Geomech. 32, 1537–1570 (2008)MATHCrossRef
50.
go back to reference Carter, J.P., Booker, J.R., Davis, E.H.: Finite deformation of an elasto-plastic soil. Int. J. Numer. Anal. Meth. Geomech. 1, 25–43 (1977)MATHCrossRef Carter, J.P., Booker, J.R., Davis, E.H.: Finite deformation of an elasto-plastic soil. Int. J. Numer. Anal. Meth. Geomech. 1, 25–43 (1977)MATHCrossRef
51.
go back to reference Chang, C.H., Ramshaw, J.D.: Dynamical evolution of volume fractions in multipressure multiphase flow models. Phys. Rev. E 77, 066305 (2008)CrossRef Chang, C.H., Ramshaw, J.D.: Dynamical evolution of volume fractions in multipressure multiphase flow models. Phys. Rev. E 77, 066305 (2008)CrossRef
52.
go back to reference Chorin, A.J., Hughes, T.J.R., McCracken, M.F., Marsden, J.E.: Product formulas and numerical algorithms. Commun. Pure Appl. Math. 31, 205–256 (1978)MathSciNetMATHCrossRef Chorin, A.J., Hughes, T.J.R., McCracken, M.F., Marsden, J.E.: Product formulas and numerical algorithms. Commun. Pure Appl. Math. 31, 205–256 (1978)MathSciNetMATHCrossRef
53.
go back to reference Colella, P., Glaz, H.M., Ferguson, R.E.: Multifluid algorithms for Eulerian finite difference methods (1997). (unpublished manuscript) Colella, P., Glaz, H.M., Ferguson, R.E.: Multifluid algorithms for Eulerian finite difference methods (1997). (unpublished manuscript)
54.
go back to reference Coussot, P., Ancey, C.: Rheophysical classification of concentrated suspensions and granular pastes. Phys. Rev. E 59(4), 4445–4457 (1999)CrossRef Coussot, P., Ancey, C.: Rheophysical classification of concentrated suspensions and granular pastes. Phys. Rev. E 59(4), 4445–4457 (1999)CrossRef
55.
go back to reference Craig, R.F.: Craig’s Soil Mechanics, 7th edn. E & FN Spon, London (2007) Craig, R.F.: Craig’s Soil Mechanics, 7th edn. E & FN Spon, London (2007)
56.
go back to reference Cushman, J.H., Bennethum, L.S., Hu, B.X.: A primer on upscaling tools for porous media. Adv. Water Resour. 25, 1043–1067 (2002)CrossRef Cushman, J.H., Bennethum, L.S., Hu, B.X.: A primer on upscaling tools for porous media. Adv. Water Resour. 25, 1043–1067 (2002)CrossRef
57.
go back to reference Das, B.M.: Advanced Soil Mechanics, 3rd edn. Taylor & Francis, Boca Raton (2008) Das, B.M.: Advanced Soil Mechanics, 3rd edn. Taylor & Francis, Boca Raton (2008)
58.
go back to reference Dassault Systèmes: Abaqus Analysis User’s Guide, Version 6.14 (2014) Dassault Systèmes: Abaqus Analysis User’s Guide, Version 6.14 (2014)
59.
go back to reference DeBar, R.B.: Fundamentals of the KRAKEN code. Technical report UCID-17366, Lawrence Livermore Laboratory, Livermore, USA (1974) DeBar, R.B.: Fundamentals of the KRAKEN code. Technical report UCID-17366, Lawrence Livermore Laboratory, Livermore, USA (1974)
60.
go back to reference Denlinger, R.P., Iverson, R.M.: Flow of variably fluidized granular masses across three-dimensional terrain. Numerical predictions and experimental tests. J. Geophys. Res. 106(B1), 553–566 (2001)CrossRef Denlinger, R.P., Iverson, R.M.: Flow of variably fluidized granular masses across three-dimensional terrain. Numerical predictions and experimental tests. J. Geophys. Res. 106(B1), 553–566 (2001)CrossRef
61.
go back to reference Di, Y., Yang, J., Sato, T.: An operator-split ALE model for large deformation analysis of geomaterials. Int. J. Numer. Anal. Meth. Geomech. 31, 1375–1399 (2007)MATHCrossRef Di, Y., Yang, J., Sato, T.: An operator-split ALE model for large deformation analysis of geomaterials. Int. J. Numer. Anal. Meth. Geomech. 31, 1375–1399 (2007)MATHCrossRef
62.
go back to reference DIN EN ISO 14688–1: Geotechnische Erkundung und Untersuchung – Benennung, Beschreibung und Klassifizierung von Boden – Teil 1: Benennung und Beschreibung. Beuth Verlag, Berlin, January 2003 (German Code) DIN EN ISO 14688–1: Geotechnische Erkundung und Untersuchung – Benennung, Beschreibung und Klassifizierung von Boden – Teil 1: Benennung und Beschreibung. Beuth Verlag, Berlin, January 2003 (German Code)
63.
go back to reference Drew, D.A.: Mathematical modeling of two-phase flow. Annu. Rev. Fluid Mech. 15, 261–291 (1983)MATHCrossRef Drew, D.A.: Mathematical modeling of two-phase flow. Annu. Rev. Fluid Mech. 15, 261–291 (1983)MATHCrossRef
64.
65.
go back to reference Dyadechko, V., Shashkov, M.: Moment-of-fluid interface reconstruction. Report LA-UR-05-7571, Los Alamos National Laboratory, Los Alamos, USA (2005) Dyadechko, V., Shashkov, M.: Moment-of-fluid interface reconstruction. Report LA-UR-05-7571, Los Alamos National Laboratory, Los Alamos, USA (2005)
66.
go back to reference Dyadechko, V., Shashkov, M.: Reconstruction of multi-material interfaces from moment data. J. Comput. Phys. 227, 5361–5384 (2008)MathSciNetMATHCrossRef Dyadechko, V., Shashkov, M.: Reconstruction of multi-material interfaces from moment data. J. Comput. Phys. 227, 5361–5384 (2008)MathSciNetMATHCrossRef
67.
go back to reference Emeriault, F., Cambou, B., Mahboubi, A.: Homogenization for granular materials: non reversible behaviour. Mech. Cohesive-Frictional Mater. 1, 199–218 (1996)CrossRef Emeriault, F., Cambou, B., Mahboubi, A.: Homogenization for granular materials: non reversible behaviour. Mech. Cohesive-Frictional Mater. 1, 199–218 (1996)CrossRef
69.
go back to reference Freßmann, D.: On single- and multi-material arbitrary Lagrangian-Eulerian approaches with application to micromechanical problems at finte deformations. Dissertation, Fachbereich Bauingenieur- und Vermessungswesen, Universität Hannover, Germany (2004) Freßmann, D.: On single- and multi-material arbitrary Lagrangian-Eulerian approaches with application to micromechanical problems at finte deformations. Dissertation, Fachbereich Bauingenieur- und Vermessungswesen, Universität Hannover, Germany (2004)
70.
go back to reference Freßmann, D., Wriggers, P.: Advection approaches for single-and multi-material arbitrary Lagrangian-Eulerian finite element procedures. Comput. Mech. 39, 153–190 (2007)MATHCrossRef Freßmann, D., Wriggers, P.: Advection approaches for single-and multi-material arbitrary Lagrangian-Eulerian finite element procedures. Comput. Mech. 39, 153–190 (2007)MATHCrossRef
71.
go back to reference Galera, S., Breil, J., Maire, P.-H.: A 2D unstructured multi-material Cell-Centered Arbitrary Lagrangian-Eulerian (CCALE) scheme using MOF interface reconstruction. Comput. Fluids 46, 237–244 (2011)MATHCrossRef Galera, S., Breil, J., Maire, P.-H.: A 2D unstructured multi-material Cell-Centered Arbitrary Lagrangian-Eulerian (CCALE) scheme using MOF interface reconstruction. Comput. Fluids 46, 237–244 (2011)MATHCrossRef
72.
go back to reference Gingold, R.A., Monaghan, J.J.: Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 181, 375–389 (1977)MATHCrossRef Gingold, R.A., Monaghan, J.J.: Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 181, 375–389 (1977)MATHCrossRef
73.
go back to reference Gudehus, G.: A comprehensive constitutive equation for granular materials. Soils Found. 36(1), 1–12 (1996)CrossRef Gudehus, G.: A comprehensive constitutive equation for granular materials. Soils Found. 36(1), 1–12 (1996)CrossRef
74.
go back to reference Hassanizadeh, M., Gray, W.G.: General conservation equations for multi-phase systems: 1, averaging procedure. Adv. Water Resour. 2, 131–144 (1979)CrossRef Hassanizadeh, M., Gray, W.G.: General conservation equations for multi-phase systems: 1, averaging procedure. Adv. Water Resour. 2, 131–144 (1979)CrossRef
75.
go back to reference Hassanizadeh, M., Gray, W.G.: General conservation equations for multi-phase systems: 2, mass, momenta, energy, and entropy equations. Adv. Water Resour. 2, 191–203 (1979)CrossRef Hassanizadeh, M., Gray, W.G.: General conservation equations for multi-phase systems: 2, mass, momenta, energy, and entropy equations. Adv. Water Resour. 2, 191–203 (1979)CrossRef
76.
go back to reference Hassanizadeh, M., Gray, W.G.: General conservation equations for multi-phase systems: 3, constitutive theory for porous media flow. Adv. Water Resour. 3, 25–40 (1980)CrossRef Hassanizadeh, M., Gray, W.G.: General conservation equations for multi-phase systems: 3, constitutive theory for porous media flow. Adv. Water Resour. 3, 25–40 (1980)CrossRef
77.
go back to reference Hassanizadeh, M., Gray, W.G.: Mechanics and thermodynamics of multiphase flow in porous media including interphase boundaries. Adv. Water Resour. 13(4), 169–186 (1990)CrossRef Hassanizadeh, M., Gray, W.G.: Mechanics and thermodynamics of multiphase flow in porous media including interphase boundaries. Adv. Water Resour. 13(4), 169–186 (1990)CrossRef
78.
go back to reference Heinrich, P.: Nonlinear water waves generated by submarine and aerial landslides. J. Waterw. Port Coast. Ocean Eng. 118(3), 249–266 (1992)CrossRef Heinrich, P.: Nonlinear water waves generated by submarine and aerial landslides. J. Waterw. Port Coast. Ocean Eng. 118(3), 249–266 (1992)CrossRef
79.
go back to reference Hicks, M.A., Dijkstra, J., Lloret-Cabot, M., Karstunen, M. (eds.): Installation Effects in Geotechnical Engineering. CRC Press, London (2013) Hicks, M.A., Dijkstra, J., Lloret-Cabot, M., Karstunen, M. (eds.): Installation Effects in Geotechnical Engineering. CRC Press, London (2013)
80.
go back to reference Hirsch, C.: Numerical Computation of Internal and External Flows, Vol. 1: Fundamentals of Computational Fluid Dynamics, 2nd edn. Butterworth-Heinemann, Burlington (2007) Hirsch, C.: Numerical Computation of Internal and External Flows, Vol. 1: Fundamentals of Computational Fluid Dynamics, 2nd edn. Butterworth-Heinemann, Burlington (2007)
81.
go back to reference Hirt, C.W., Nichols, B.D.: Volume of Fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39, 201–225 (1981)MATHCrossRef Hirt, C.W., Nichols, B.D.: Volume of Fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39, 201–225 (1981)MATHCrossRef
82.
go back to reference Hirt, C.W., Amsden, A.A., Cook, J.L.: An arbitrary Lagrangian-Eulerian computing method for all flow speeds. J. Comput. Phys. 14, 227–253 (1974)MATHCrossRef Hirt, C.W., Amsden, A.A., Cook, J.L.: An arbitrary Lagrangian-Eulerian computing method for all flow speeds. J. Comput. Phys. 14, 227–253 (1974)MATHCrossRef
84.
go back to reference Hu, Y., Randolph, M.F.: A practical numerical approach for large deformation problems in soil. Int. J. Numer. Anal. Meth. Geomech. 22, 327–350 (1998)MATHCrossRef Hu, Y., Randolph, M.F.: A practical numerical approach for large deformation problems in soil. Int. J. Numer. Anal. Meth. Geomech. 22, 327–350 (1998)MATHCrossRef
85.
go back to reference Hughes, T.J.R.: Numerical implementation of constitutive models: rate-independent deviatoric plasticity. In: Nemat-Nasser, S., Asaro, R.J., Hegemier, G.A. (eds.) Theoretical Foundation for Large-Scale Computations for Nonlinear Material Behavior, pp. 29–63. Martinus Nijhoff Publishers, Dordrecht (1984)CrossRef Hughes, T.J.R.: Numerical implementation of constitutive models: rate-independent deviatoric plasticity. In: Nemat-Nasser, S., Asaro, R.J., Hegemier, G.A. (eds.) Theoretical Foundation for Large-Scale Computations for Nonlinear Material Behavior, pp. 29–63. Martinus Nijhoff Publishers, Dordrecht (1984)CrossRef
88.
89.
go back to reference Ishii, M., Hibiki, T.: Thermo-Fluid Dynamics of Two-Phase Flow, 2nd edn. Springer, LLC (2011)MATHCrossRef Ishii, M., Hibiki, T.: Thermo-Fluid Dynamics of Two-Phase Flow, 2nd edn. Springer, LLC (2011)MATHCrossRef
90.
go back to reference Iverson, R.M.: The physics of debris flows. Rev. Geophys. 35(3), 245–296 (1997)CrossRef Iverson, R.M.: The physics of debris flows. Rev. Geophys. 35(3), 245–296 (1997)CrossRef
91.
go back to reference Iverson, R.M.: The debris-flow rheology myth. In: Rickenmann, D., Chen, C.L. (eds.) Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, pp. 303–314. Millpress, Rotterdam (2003) Iverson, R.M.: The debris-flow rheology myth. In: Rickenmann, D., Chen, C.L. (eds.) Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, pp. 303–314. Millpress, Rotterdam (2003)
92.
go back to reference Iverson, R.M., Denlinger, R.P.: Flow of variably fluidized granular masses across three-dimensional terrain, 1. Coulomb mixture theory. J. Geophys. Res. 106(B1), 537–552 (2001)CrossRef Iverson, R.M., Denlinger, R.P.: Flow of variably fluidized granular masses across three-dimensional terrain, 1. Coulomb mixture theory. J. Geophys. Res. 106(B1), 537–552 (2001)CrossRef
93.
go back to reference Johnson, P.C., Jackson, R.: Frictional-collisional constitutive relations for granular materials, with application to plane shearing. J. Fluid Mech. 176, 67–93 (1987)CrossRef Johnson, P.C., Jackson, R.: Frictional-collisional constitutive relations for granular materials, with application to plane shearing. J. Fluid Mech. 176, 67–93 (1987)CrossRef
94.
go back to reference Jop, P., Forterre, Y., Pouliquen, O.: A constitutive law for dense granular flows. Nature 441, 727–730 (2006)CrossRef Jop, P., Forterre, Y., Pouliquen, O.: A constitutive law for dense granular flows. Nature 441, 727–730 (2006)CrossRef
95.
go back to reference Kolymbas, D.: Introduction to Hypoplasticity. A.A. Balkema, Rotterdam (2000) Kolymbas, D.: Introduction to Hypoplasticity. A.A. Balkema, Rotterdam (2000)
96.
go back to reference Lade, P.V., de Boer, R.: The concept of effective stress for soil, concrete and rock. Géotechnique 47, 61–78 (1997)CrossRef Lade, P.V., de Boer, R.: The concept of effective stress for soil, concrete and rock. Géotechnique 47, 61–78 (1997)CrossRef
97.
go back to reference Lade, P.V., Yamamuro, J.A. (eds.): Physics and Mechanics of Soil Liquefaction. A.A. Balkema, Rotterdam (1999) Lade, P.V., Yamamuro, J.A. (eds.): Physics and Mechanics of Soil Liquefaction. A.A. Balkema, Rotterdam (1999)
98.
go back to reference LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems, 3rd edn. Cambridge University Press, Cambridge (2002)MATHCrossRef LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems, 3rd edn. Cambridge University Press, Cambridge (2002)MATHCrossRef
99.
go back to reference Lewis, R.W., Schrefler, B.A.: The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media, 2nd edn. Wiley, Chichester (1998)MATH Lewis, R.W., Schrefler, B.A.: The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media, 2nd edn. Wiley, Chichester (1998)MATH
100.
go back to reference Li, X.S.: A sand model with state-dependent dilatancy. Géotechnique 52(3), 173–186 (2002)CrossRef Li, X.S.: A sand model with state-dependent dilatancy. Géotechnique 52(3), 173–186 (2002)CrossRef
101.
go back to reference Livermore Software Technology Corporation (LSTC): LS-DYNA Keyword User’s Manual, Vol. I, R8.0. Livermore Software Technology Corporation (LSTC) (2015) Livermore Software Technology Corporation (LSTC): LS-DYNA Keyword User’s Manual, Vol. I, R8.0. Livermore Software Technology Corporation (LSTC) (2015)
102.
go back to reference Liyanapathirana, D.S.: Arbitrary Lagrangian Eulerian based finite element analysis of cone penetration in soft clay. Comput. Geotech. 36, 851–860 (2009)CrossRef Liyanapathirana, D.S.: Arbitrary Lagrangian Eulerian based finite element analysis of cone penetration in soft clay. Comput. Geotech. 36, 851–860 (2009)CrossRef
103.
go back to reference Locat, J., Lee, H.J.: Submarine landslides: advances and challenges. Can. Geotech. J. 39, 193–212 (2002)CrossRef Locat, J., Lee, H.J.: Submarine landslides: advances and challenges. Can. Geotech. J. 39, 193–212 (2002)CrossRef
104.
go back to reference Loges, I., Niemunis, A.: Neohypoplasticity—estimation of small strain stiffness. In: Triantafyllidis, T. (ed.) Holistic Simulation of Geotechnical Installation Processes. LNACM, vol. 77, pp. 163–180. Springer, Heidelberg (2015). doi:10.1007/978-3-319-18170-7_9 CrossRef Loges, I., Niemunis, A.: Neohypoplasticity—estimation of small strain stiffness. In: Triantafyllidis, T. (ed.) Holistic Simulation of Geotechnical Installation Processes. LNACM, vol. 77, pp. 163–180. Springer, Heidelberg (2015). doi:10.​1007/​978-3-319-18170-7_​9 CrossRef
105.
go back to reference Lucy, L.B.: A numerical approach to the testing of the fission hypothesis. Astron. J. 82, 1013–1024 (1977)CrossRef Lucy, L.B.: A numerical approach to the testing of the fission hypothesis. Astron. J. 82, 1013–1024 (1977)CrossRef
106.
go back to reference Luttwak, G., Rabie, R.L.: The multi material arbitrary Lagrangian Eulerian code MMALE and its application to some problems of penetration and impact. Technical report LA-UR-85-2311, Los Alamos National Laboratory, Los Alamos, New Mexico, USA (1985) Luttwak, G., Rabie, R.L.: The multi material arbitrary Lagrangian Eulerian code MMALE and its application to some problems of penetration and impact. Technical report LA-UR-85-2311, Los Alamos National Laboratory, Los Alamos, New Mexico, USA (1985)
107.
go back to reference Ma, G., Shi, F., Kirby, J.T.: Shock-capturing non-hydrostatic model for fully dispersive surface wave processes. Ocean Model. 43–44, 22–35 (2012)CrossRef Ma, G., Shi, F., Kirby, J.T.: Shock-capturing non-hydrostatic model for fully dispersive surface wave processes. Ocean Model. 43–44, 22–35 (2012)CrossRef
108.
go back to reference Ma, G., Kirby, J.T., Shi, F.: Numerical simulation of Tsunami waves generated by deformable submarine landslides. Ocean Model. 69, 146–165 (2013)CrossRef Ma, G., Kirby, J.T., Shi, F.: Numerical simulation of Tsunami waves generated by deformable submarine landslides. Ocean Model. 69, 146–165 (2013)CrossRef
109.
go back to reference Mabsout, M.E., Tassoulas, J.L.: A finite element model for the simulation of pile driving. Int. J. Numer. Meth. Eng. 37, 257–278 (1994)MATHCrossRef Mabsout, M.E., Tassoulas, J.L.: A finite element model for the simulation of pile driving. Int. J. Numer. Meth. Eng. 37, 257–278 (1994)MATHCrossRef
110.
go back to reference Mair, H.U.: Review: hydrocodes for structural response to underwater explosions. Shock Vibr. 6, 81–96 (1999)CrossRef Mair, H.U.: Review: hydrocodes for structural response to underwater explosions. Shock Vibr. 6, 81–96 (1999)CrossRef
111.
go back to reference Malvern, L.E.: Introduction to the Mechanics of a Continuous Medium. Prentice Hall Inc., New Jersey (1969)MATH Malvern, L.E.: Introduction to the Mechanics of a Continuous Medium. Prentice Hall Inc., New Jersey (1969)MATH
112.
go back to reference Mandell, D.A., Adams, T.F., Holian, K.S., Addessio, F.L., Baumgardner, J.R., Mosso, S.J.: MESA: a 3-D computer code for armor/anti-armor applications. Report LA-UR-89-1851, Los Alamos National Laboratory, Los Alamos, USA (1989) Mandell, D.A., Adams, T.F., Holian, K.S., Addessio, F.L., Baumgardner, J.R., Mosso, S.J.: MESA: a 3-D computer code for armor/anti-armor applications. Report LA-UR-89-1851, Los Alamos National Laboratory, Los Alamos, USA (1989)
113.
go back to reference Manzari, M.T., Dafalias, Y.F.: A critical state two-surface plasticity model for sands. Géotechnique 47(2), 255–272 (1997)CrossRef Manzari, M.T., Dafalias, Y.F.: A critical state two-surface plasticity model for sands. Géotechnique 47(2), 255–272 (1997)CrossRef
114.
go back to reference Masson, D.G., Harbitz, C.B., Wynn, R.B., Pedersen, G., Løvholt, F.: Submarine landslides: processes, triggers and hazard prediction. Philos. Trans. R. Soc. Lond. Ser. A 364, 2009–2039 (2006)MathSciNetCrossRef Masson, D.G., Harbitz, C.B., Wynn, R.B., Pedersen, G., Løvholt, F.: Submarine landslides: processes, triggers and hazard prediction. Philos. Trans. R. Soc. Lond. Ser. A 364, 2009–2039 (2006)MathSciNetCrossRef
115.
go back to reference McGlaun, J.M., Thompson, S.L.: CTH: a three-dimensional shock wave physics code. Int. J. Impact Eng. 10, 351–360 (1990)CrossRef McGlaun, J.M., Thompson, S.L.: CTH: a three-dimensional shock wave physics code. Int. J. Impact Eng. 10, 351–360 (1990)CrossRef
116.
go back to reference Miller, G.H., Puckett, E.G.: A high-order Godunov method for multiple condensed phases. J. Comput. Phys. 128, 134–164 (1996)MATHCrossRef Miller, G.H., Puckett, E.G.: A high-order Godunov method for multiple condensed phases. J. Comput. Phys. 128, 134–164 (1996)MATHCrossRef
117.
go back to reference Miller, D.S., Zimmerman, G.B.: An algorithm for time evolving volume fractions in mixed zones in Lagrangian hydrodynamics calculations. Russ. J. Phy. Chem. B 3, 117–121 (2009)CrossRef Miller, D.S., Zimmerman, G.B.: An algorithm for time evolving volume fractions in mixed zones in Lagrangian hydrodynamics calculations. Russ. J. Phy. Chem. B 3, 117–121 (2009)CrossRef
118.
go back to reference Moseley, M.P., Kirsch, K. (eds.): Ground Improvement, 2nd edn. Spon Press, New York (2004) Moseley, M.P., Kirsch, K. (eds.): Ground Improvement, 2nd edn. Spon Press, New York (2004)
119.
go back to reference Murad, M.A., Bennethum, L.S., Cushman, J.H.: A multi-scale theory of swelling porous media: I, application to one-dimensional consolidation. Transp. Porous Media 19, 93–122 (1995)CrossRef Murad, M.A., Bennethum, L.S., Cushman, J.H.: A multi-scale theory of swelling porous media: I, application to one-dimensional consolidation. Transp. Porous Media 19, 93–122 (1995)CrossRef
120.
go back to reference Murad, M.A., Cushman, J.H.: Multiscale flow and deformation in hydrophilic swelling porous media. Int. J. Eng. Sci. 34(3), 313–338 (1996)MathSciNetMATHCrossRef Murad, M.A., Cushman, J.H.: Multiscale flow and deformation in hydrophilic swelling porous media. Int. J. Eng. Sci. 34(3), 313–338 (1996)MathSciNetMATHCrossRef
121.
go back to reference Nazem, M., Sheng, D., Carter, J.P.: Stress integration and mesh refinement for large deformation in geomechanics. Int. J. Numer. Meth. Eng. 65, 1002–1027 (2006)MATHCrossRef Nazem, M., Sheng, D., Carter, J.P.: Stress integration and mesh refinement for large deformation in geomechanics. Int. J. Numer. Meth. Eng. 65, 1002–1027 (2006)MATHCrossRef
122.
go back to reference Nazem, M., Sheng, D., Carter, J.P., Sloan, S.W.: Arbitrary Lagrangian-Eulerian method for large-strain consolidation problems. Int. J. Numer. Anal. Method Geomech. 32(9), 1023–1050 (2008)MATHCrossRef Nazem, M., Sheng, D., Carter, J.P., Sloan, S.W.: Arbitrary Lagrangian-Eulerian method for large-strain consolidation problems. Int. J. Numer. Anal. Method Geomech. 32(9), 1023–1050 (2008)MATHCrossRef
123.
go back to reference Niemunis, A., Herle, I.: Hypoplastic model for cohesionless soils with elastic strain range. Mech. Cohesive-Frictional Mater. 2, 279–299 (1997)CrossRef Niemunis, A., Herle, I.: Hypoplastic model for cohesionless soils with elastic strain range. Mech. Cohesive-Frictional Mater. 2, 279–299 (1997)CrossRef
124.
go back to reference Niemunis, A., Tavera, C.E.G., Wichtmann, T.: Peak stress obliquity in drained and undrained sands, simulations with neohypoplasticity. In: Triantafyllidis, T. (ed.) Holistic Simulation of Geotechnical Installation Processes. LNACM, vol. 80, pp. 85–114. Springer, Heidelberg (2016). doi:10.1007/978-3-319-23159-4_5 CrossRef Niemunis, A., Tavera, C.E.G., Wichtmann, T.: Peak stress obliquity in drained and undrained sands, simulations with neohypoplasticity. In: Triantafyllidis, T. (ed.) Holistic Simulation of Geotechnical Installation Processes. LNACM, vol. 80, pp. 85–114. Springer, Heidelberg (2016). doi:10.​1007/​978-3-319-23159-4_​5 CrossRef
125.
go back to reference Nikolinakou, M.A., Whittle, A.J., Savidis, S.A., Schran, U.: Prediction and interpretation of the performance of a deep excavation in Berlin sand. J. Geotech. Geoenviron. Eng. 137(11), 1047–1061 (2011)CrossRef Nikolinakou, M.A., Whittle, A.J., Savidis, S.A., Schran, U.: Prediction and interpretation of the performance of a deep excavation in Berlin sand. J. Geotech. Geoenviron. Eng. 137(11), 1047–1061 (2011)CrossRef
126.
go back to reference Noh, W.F.: CEL: a time-dependent, two-space-dimensional, coupled Eulerian-Lagrange code. In: Alder, B. et al. (ed.) Methods in Computational Physics, Advances in Research and Applications, vol. 3: Fundamental Methods in Hydrodynamics, pp. 117–179. Academic Press, New York and London (1964) Noh, W.F.: CEL: a time-dependent, two-space-dimensional, coupled Eulerian-Lagrange code. In: Alder, B. et al. (ed.) Methods in Computational Physics, Advances in Research and Applications, vol. 3: Fundamental Methods in Hydrodynamics, pp. 117–179. Academic Press, New York and London (1964)
127.
go back to reference Passman, S.L., Nunziato, J.W., Bailey, P.B., Reed, K.W.: Shearing motion of a fluid-saturated granular material. J. Rheol. 30(1), 167–192 (1986)MATHCrossRef Passman, S.L., Nunziato, J.W., Bailey, P.B., Reed, K.W.: Shearing motion of a fluid-saturated granular material. J. Rheol. 30(1), 167–192 (1986)MATHCrossRef
128.
go back to reference Pastor, M., Zienkiewicz, O.C., Chan, A.H.C.: Generalized plasticity and the modelling of soil behaviour. Int. J. Numer. Anal. Method Geomech. 14, 151–190 (1990)MATHCrossRef Pastor, M., Zienkiewicz, O.C., Chan, A.H.C.: Generalized plasticity and the modelling of soil behaviour. Int. J. Numer. Anal. Method Geomech. 14, 151–190 (1990)MATHCrossRef
129.
go back to reference Peery, J.S., Carroll, D.E.: Multi-material ALE methods in unstructured grids. Comput. Methods Appl. Mech. Eng. 187, 591–619 (2000)MathSciNetMATHCrossRef Peery, J.S., Carroll, D.E.: Multi-material ALE methods in unstructured grids. Comput. Methods Appl. Mech. Eng. 187, 591–619 (2000)MathSciNetMATHCrossRef
130.
131.
go back to reference Plumb, O.A., Whitaker, S.: Dispersion in heterogeneous porous media, 1. local volume averaging and large-scale averaging. Water Resour. Res. 24(7), 913–926 (1988)CrossRef Plumb, O.A., Whitaker, S.: Dispersion in heterogeneous porous media, 1. local volume averaging and large-scale averaging. Water Resour. Res. 24(7), 913–926 (1988)CrossRef
132.
go back to reference Pudasaini, S.P.: A general two-phase debris flow model. J. Geophys. Res. 117, F03010 (2012)CrossRef Pudasaini, S.P.: A general two-phase debris flow model. J. Geophys. Res. 117, F03010 (2012)CrossRef
133.
go back to reference Pudasaini, S.P., Hutter, K.: Avalanche Dynamics: Dynamics of Rapid Flows of Dense Granular Avalanche. Springer, Heidelberg (2007) Pudasaini, S.P., Hutter, K.: Avalanche Dynamics: Dynamics of Rapid Flows of Dense Granular Avalanche. Springer, Heidelberg (2007)
134.
go back to reference Pudasaini, S.P., Wang, Y., Hutter, K.: Modelling debris flows down general channels. Nat. Hazards Earth Syst. Sci. 5, 799–819 (2005)CrossRef Pudasaini, S.P., Wang, Y., Hutter, K.: Modelling debris flows down general channels. Nat. Hazards Earth Syst. Sci. 5, 799–819 (2005)CrossRef
135.
go back to reference Qiu, G., Henke, S., Grabe, J.: Application of a coupled Eulerian-Lagrangian approach on geomechanical problems involving large deformations. Comput. Geotech. 38, 30–39 (2011)CrossRef Qiu, G., Henke, S., Grabe, J.: Application of a coupled Eulerian-Lagrangian approach on geomechanical problems involving large deformations. Comput. Geotech. 38, 30–39 (2011)CrossRef
136.
go back to reference Rackwitz, F., Savidis, S.A.: Numerische Untersuchungen zum Tragverhalten von Zugpfählen in Berliner Sand. Bauingenieur 79(9), 375–383 (2004). (in German) Rackwitz, F., Savidis, S.A.: Numerische Untersuchungen zum Tragverhalten von Zugpfählen in Berliner Sand. Bauingenieur 79(9), 375–383 (2004). (in German)
138.
139.
go back to reference Savage, S.B., Hutter, K.: The motion of a finite mass of granular material down a rough incline. J. Fluid Mech. 199, 21–24 (1989)MathSciNetMATHCrossRef Savage, S.B., Hutter, K.: The motion of a finite mass of granular material down a rough incline. J. Fluid Mech. 199, 21–24 (1989)MathSciNetMATHCrossRef
140.
go back to reference Savidis, S.A., Aubram, D., Rackwitz, F.: Arbitrary Lagrangian-Eulerian finite element formulation for geotechnical construction processes. J. Theoret. Appl. Mech. 38(1–2), 165–194 (2008)MathSciNet Savidis, S.A., Aubram, D., Rackwitz, F.: Arbitrary Lagrangian-Eulerian finite element formulation for geotechnical construction processes. J. Theoret. Appl. Mech. 38(1–2), 165–194 (2008)MathSciNet
141.
go back to reference Savidis, S.A., Aubram, D., Rackwitz, F.: Vibro-injection pile installation in sand: part ii—numerical and experimental investigation. In: Triantafyllidis, T. (ed.) Holistic Simulation of Geotechnical Installation Processes. LNACM, vol. 77, pp. 103–131. Springer, Heidelberg (2015). doi:10.1007/978-3-319-18170-7_6 CrossRef Savidis, S.A., Aubram, D., Rackwitz, F.: Vibro-injection pile installation in sand: part ii—numerical and experimental investigation. In: Triantafyllidis, T. (ed.) Holistic Simulation of Geotechnical Installation Processes. LNACM, vol. 77, pp. 103–131. Springer, Heidelberg (2015). doi:10.​1007/​978-3-319-18170-7_​6 CrossRef
142.
go back to reference Scardovelli, R., Zaleski, S.: Direct numerical simulation of free-surface and interfacial flow. Annu. Rev. Fluid Mech. 31, 567–603 (1999)MathSciNetCrossRef Scardovelli, R., Zaleski, S.: Direct numerical simulation of free-surface and interfacial flow. Annu. Rev. Fluid Mech. 31, 567–603 (1999)MathSciNetCrossRef
143.
go back to reference Shashkov, M.: Closure models for multimaterial cells in arbitrary Lagrangian-Eulerian hydrocodes. Int. J. Num. Methods Fluids 56(8), 1497–1504 (2008)MATHCrossRef Shashkov, M.: Closure models for multimaterial cells in arbitrary Lagrangian-Eulerian hydrocodes. Int. J. Num. Methods Fluids 56(8), 1497–1504 (2008)MATHCrossRef
144.
go back to reference Schofield, A.N., Wroth, C.P.: Critical State Soil Mechanics. McGraw-Hill, New York (1968) Schofield, A.N., Wroth, C.P.: Critical State Soil Mechanics. McGraw-Hill, New York (1968)
145.
go back to reference Seed, R.B., Cetin, K.O., Moss, R.E.S., Kammerer, A.M., Wu, J., Pestana, J.M., Riemer, M.F., Sancio, R.B., Bray, J.D., Kayen, R.E., Faris, A.: Recent advances in soil liquefaction engineering: a unified and consistent framework. Technical report EERC 2003–06, University of California, Berkeley, California, USA (2003) Seed, R.B., Cetin, K.O., Moss, R.E.S., Kammerer, A.M., Wu, J., Pestana, J.M., Riemer, M.F., Sancio, R.B., Bray, J.D., Kayen, R.E., Faris, A.: Recent advances in soil liquefaction engineering: a unified and consistent framework. Technical report EERC 2003–06, University of California, Berkeley, California, USA (2003)
146.
go back to reference Sheng, D., Nazem, M., Carter, J.P.: Some computational aspects for solving deep penetration problems in geomechanics. Comput. Mech. 44, 549–561 (2009)MATHCrossRef Sheng, D., Nazem, M., Carter, J.P.: Some computational aspects for solving deep penetration problems in geomechanics. Comput. Mech. 44, 549–561 (2009)MATHCrossRef
147.
go back to reference Simo, J.C., Hughes, T.J.R.: Computational Inelasticity. Springer, Heidelberg (1998)MATH Simo, J.C., Hughes, T.J.R.: Computational Inelasticity. Springer, Heidelberg (1998)MATH
148.
go back to reference Soga, K., Alonso, E., Yerro, A., Kumar, K., Bandara, S.: Trends in large-deformation analysis of landslide mass movements with particular emphasis on the material point method. Géotechnique 66(3), 248–273 (2016)CrossRef Soga, K., Alonso, E., Yerro, A., Kumar, K., Bandara, S.: Trends in large-deformation analysis of landslide mass movements with particular emphasis on the material point method. Géotechnique 66(3), 248–273 (2016)CrossRef
150.
go back to reference Sulsky, D., Zhou, S.-J., Schreyer, H.L.: Application of a particle-in-cell method to solid mechanics. Comput. Phys. Commun. 87, 236–252 (1995)MATHCrossRef Sulsky, D., Zhou, S.-J., Schreyer, H.L.: Application of a particle-in-cell method to solid mechanics. Comput. Phys. Commun. 87, 236–252 (1995)MATHCrossRef
151.
go back to reference Susila, E., Hryciw, R.D.: Large displacement FEM modelling of the cone penetration Test (CPT) in Normally consolidated sand. Int. J. Numer. Anal. Meth. Geomech. 27, 585–602 (2003)MATHCrossRef Susila, E., Hryciw, R.D.: Large displacement FEM modelling of the cone penetration Test (CPT) in Normally consolidated sand. Int. J. Numer. Anal. Meth. Geomech. 27, 585–602 (2003)MATHCrossRef
152.
go back to reference Taiebat, M., Dafalias, Y.F.: SANISAND: simple anisotropic sand plasticity model. Int. J. Numer. Anal. Meth. Geomech. 32, 915–948 (2008)MATHCrossRef Taiebat, M., Dafalias, Y.F.: SANISAND: simple anisotropic sand plasticity model. Int. J. Numer. Anal. Meth. Geomech. 32, 915–948 (2008)MATHCrossRef
153.
154.
go back to reference Tho, K.K., Leung, C.F., Chow, Y.K., Swaddiwudhipong, S.: Eulerian finite-element technique for analysis of jack-up spudcan penetration. Int. J. Geomech. 12, 64–73 (2012)CrossRef Tho, K.K., Leung, C.F., Chow, Y.K., Swaddiwudhipong, S.: Eulerian finite-element technique for analysis of jack-up spudcan penetration. Int. J. Geomech. 12, 64–73 (2012)CrossRef
155.
go back to reference Triantafyllidis, T. (ed.): Numerical Modelling of Construction Processes in Geotechnical Engineering for Urban Environment. CRC Press, London (2006) Triantafyllidis, T. (ed.): Numerical Modelling of Construction Processes in Geotechnical Engineering for Urban Environment. CRC Press, London (2006)
158.
go back to reference Truesdell, C., Toupin, R.A.: Encyclopedia of physics. In: Flugge, S. (ed.) Bd. III/1: The Classical Field Theories, pp. 226–793. Springer, Heidelberg (1960) Truesdell, C., Toupin, R.A.: Encyclopedia of physics. In: Flugge, S. (ed.) Bd. III/1: The Classical Field Theories, pp. 226–793. Springer, Heidelberg (1960)
159.
go back to reference Truesdell, C., Noll, W.: The Non-Linear Field Theories of Mechanics, 3rd edn. Springer, Heidelberg (2004)MATHCrossRef Truesdell, C., Noll, W.: The Non-Linear Field Theories of Mechanics, 3rd edn. Springer, Heidelberg (2004)MATHCrossRef
160.
go back to reference Trulio, J.G., Trigger, K.R.: Numerical solution of the one-dimensional hydrodynamic equations in an arbitrary time-dependent coordinate system. Report UCRL-6522, Lawrence Radiation Laboratory, University of California, Livermore, USA (1961) Trulio, J.G., Trigger, K.R.: Numerical solution of the one-dimensional hydrodynamic equations in an arbitrary time-dependent coordinate system. Report UCRL-6522, Lawrence Radiation Laboratory, University of California, Livermore, USA (1961)
161.
go back to reference Trulio, J.G.: Theory and structure of the AFTON codes. Report AFWL-TR-66-19, Air Force Weapons Laboratory, Kirtland Air Force Base, New Mexico, USA (1966) Trulio, J.G.: Theory and structure of the AFTON codes. Report AFWL-TR-66-19, Air Force Weapons Laboratory, Kirtland Air Force Base, New Mexico, USA (1966)
162.
go back to reference Vogelsang, J., Huber, G., Triantafyllidis, T.: Requirements, concepts, and selected results for model tests on pile penetration. In: Triantafyllidis, T. (ed.) Holistic Simulation of Geotechnical Installation Processes. LNACM, vol. 80, pp. 1–30. Springer, Heidelberg (2016). doi:10.1007/978-3-319-23159-4_1 CrossRef Vogelsang, J., Huber, G., Triantafyllidis, T.: Requirements, concepts, and selected results for model tests on pile penetration. In: Triantafyllidis, T. (ed.) Holistic Simulation of Geotechnical Installation Processes. LNACM, vol. 80, pp. 1–30. Springer, Heidelberg (2016). doi:10.​1007/​978-3-319-23159-4_​1 CrossRef
163.
go back to reference Vogelsang, J., Huber, G., Triantafyllidis, T., Bender, T.: Interpretation of vibratory pile penetration based on digital image correlation. In: Triantafyllidis, T. (ed.) Holistic Simulation of Geotechnical Installation Processes. LNACM, vol. 80, pp. 31–51. Springer, Heidelberg (2016). doi:10.1007/978-3-319-23159-4_2 CrossRef Vogelsang, J., Huber, G., Triantafyllidis, T., Bender, T.: Interpretation of vibratory pile penetration based on digital image correlation. In: Triantafyllidis, T. (ed.) Holistic Simulation of Geotechnical Installation Processes. LNACM, vol. 80, pp. 31–51. Springer, Heidelberg (2016). doi:10.​1007/​978-3-319-23159-4_​2 CrossRef
164.
go back to reference von Wolffersdorff, P.-A.: A hypoplastic relation for granular materials with a predefined limit state surface. Mech. Cohesive-Frictional Mater. 1, 251–271 (1996)CrossRef von Wolffersdorff, P.-A.: A hypoplastic relation for granular materials with a predefined limit state surface. Mech. Cohesive-Frictional Mater. 1, 251–271 (1996)CrossRef
165.
go back to reference Weseloh, W.N., Clancy, S.P., Painter, J.W.: PAGOSA physics manual. Report LA-14425-M, Los Alamos National Laboratory, Los Alamos, USA (2010) Weseloh, W.N., Clancy, S.P., Painter, J.W.: PAGOSA physics manual. Report LA-14425-M, Los Alamos National Laboratory, Los Alamos, USA (2010)
166.
go back to reference Whitaker, S.: Flow in porous media I: a theoretical derivation of Darcy’s law. Trans. Porous Media 1, 3–25 (1986)CrossRef Whitaker, S.: Flow in porous media I: a theoretical derivation of Darcy’s law. Trans. Porous Media 1, 3–25 (1986)CrossRef
167.
go back to reference Whitaker, S.: Flow in porous media II: the governing equations for immiscible, two-phase flow. Trans. Porous Media 1, 105–125 (1986)CrossRef Whitaker, S.: Flow in porous media II: the governing equations for immiscible, two-phase flow. Trans. Porous Media 1, 105–125 (1986)CrossRef
168.
go back to reference Whitaker, S.: Flow in porous media III: deforming media. Trans. Porous Media 1, 127–154 (1986)CrossRef Whitaker, S.: Flow in porous media III: deforming media. Trans. Porous Media 1, 127–154 (1986)CrossRef
169.
go back to reference Whitaker, S.: The Method of Volume Averaging. Kluwer Academic Publishers, Dordrecht (1999)CrossRef Whitaker, S.: The Method of Volume Averaging. Kluwer Academic Publishers, Dordrecht (1999)CrossRef
170.
go back to reference White, D.J., Take, W.A.: GeoPIV: Particle Image Velocimetry (PIV) software for use in geotechnical testing. Technical report CUED/D-SOILS/TR322, Geotechnical and Environmental Research Group, University of Cambridge, UK (2002) White, D.J., Take, W.A.: GeoPIV: Particle Image Velocimetry (PIV) software for use in geotechnical testing. Technical report CUED/D-SOILS/TR322, Geotechnical and Environmental Research Group, University of Cambridge, UK (2002)
171.
go back to reference White, D.J., Take, W.A., Bolton, M.D.: Soil deformation measurement using Particle Image Velocimetry (PIV) and photogrammetry. Géotechnique 53(7), 619–631 (2003)CrossRef White, D.J., Take, W.A., Bolton, M.D.: Soil deformation measurement using Particle Image Velocimetry (PIV) and photogrammetry. Géotechnique 53(7), 619–631 (2003)CrossRef
172.
go back to reference Wood, A.B.: A Textbook of Sound. The Macmillan Company, New York (1930) Wood, A.B.: A Textbook of Sound. The Macmillan Company, New York (1930)
173.
go back to reference Wood, D.M.: Soil Mechanics: A One-Dimensional Introduction. Cambridge University Press, Cambridge (2009) Wood, D.M.: Soil Mechanics: A One-Dimensional Introduction. Cambridge University Press, Cambridge (2009)
174.
go back to reference Wriggers, P.: Nonlinear Finite Element Methods. Springer, Heidelberg (2008)MATH Wriggers, P.: Nonlinear Finite Element Methods. Springer, Heidelberg (2008)MATH
175.
go back to reference Youngs, D.L.: Time-dependent multi-material flow with large fluid distortion. In: Morton, K.W., Baines, M.J. (eds.) Numerical Methods for Fluid Dynamics, pp. 273–285. Academic Press, London (1982) Youngs, D.L.: Time-dependent multi-material flow with large fluid distortion. In: Morton, K.W., Baines, M.J. (eds.) Numerical Methods for Fluid Dynamics, pp. 273–285. Academic Press, London (1982)
176.
go back to reference Zienkiewicz, O.C., Chan, A.H.C., Pastor, M., Schrefler, B.A., Shiomi, T.: Computational Geomechanics - With Special Reference to Earthquake Engineering. Wiley, Chichester (1999)MATH Zienkiewicz, O.C., Chan, A.H.C., Pastor, M., Schrefler, B.A., Shiomi, T.: Computational Geomechanics - With Special Reference to Earthquake Engineering. Wiley, Chichester (1999)MATH
177.
go back to reference Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method, Volume 1: The Basis, 5th edn. Butterworth-Heinemann, Oxford (2000)MATH Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method, Volume 1: The Basis, 5th edn. Butterworth-Heinemann, Oxford (2000)MATH
Metadata
Title
Contribution to the Non-Lagrangian Formulation of Geotechnical and Geomechanical Processes
Authors
Daniel Aubram
Frank Rackwitz
Stavros A. Savidis
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-52590-7_3