Skip to main content
Top

2020 | OriginalPaper | Chapter

24. Control and Automation for Miniaturized Microwave GSG Nanoprobing

Authors : Alaa Taleb, Denis Pomorski, Christophe Boyaval, Steve Arscott, Gilles Dambrine, Kamel Haddadi

Published in: Machine Vision and Navigation

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The general objective addresses the challenge of the miniaturized microwave characterization of nanodevices. The method is based on a measurement setup that consists of a vector network analyzer (VNA) connected through coaxial cables to miniaturized homemade coplanar waveguide (CPW) probes (one signal contact and two ground contacts), which are themselves mounted on three-axis piezoelectric nanomanipulators SmarAct™. The device under test (DUT) is positioned on a sample holder equipped also with nanopositioners and a rotation system with μ-degree resolution. The visualization is carried out by a scanning electron microscope (SEM) instead of conventional optics commonly found in usual on-wafer probe stations. This study addresses the challenge related to the control of nanomanipulators in order to ensure precisely the contact between the probe tips and the DUT to be characterized. The DUT is inserted between the central ribbon and the ground planes of the coplanar test structure (width of the central ribbon = 2.3 μm, distance between the central ribbon and the ground planes = 1.8 μm). First, we use classical automatic linear tools to identify the transfer function of a system of three linear nanopositioners along the X, Y, and Z axes. This part allows the precise control of each nanomanipulator using LabVIEW™, with an overshoot of the final value (according to a minimal response time in X and Y) or without an overshoot of the final value (in order to avoid any crashing of the probe tips on the substrate in Z). Second, we propose an angular control methodology (using Matlab™) in order to align the probe tips on the CPW ports of the DUT. Finally, the detection of the points of interest (use of the Harris detector) allows one to determine the set point value of each linear nanopositioner X, Y, and Z. These three steps ensure the precise positioning of the probe tips to ensure accurate microwave characterization of the DUT.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Happy, H., Haddadi, K., Théron, D., Lasri, T., & Dambrine, G. (2014). Measurement techniques for RF nanoelectronic devices: New equipment to overcome the problems of impedance and scale mismatch. IEEE Microwave Magazine, 15(1), 30–39.CrossRef Happy, H., Haddadi, K., Théron, D., Lasri, T., & Dambrine, G. (2014). Measurement techniques for RF nanoelectronic devices: New equipment to overcome the problems of impedance and scale mismatch. IEEE Microwave Magazine, 15(1), 30–39.CrossRef
3.
go back to reference Rumiantsev, A., & Doerner, R. (2013). RF Probe Technology. IEEE Microwave Magazine, 14, 46–58. CrossRef Rumiantsev, A., & Doerner, R. (2013). RF Probe Technology. IEEE Microwave Magazine, 14, 46–58. CrossRef
4.
go back to reference Daffé, K., Dambrine, G., Von Kleist-Retzow, F., & Haddadi, K. (2016). RF wafer probing with improved contact repeatability using nanometer positioning. In 87th ARFTG Microwave Measurement Conference Dig, San Francisco, CA, pp. 1–4. Daffé, K., Dambrine, G., Von Kleist-Retzow, F., & Haddadi, K. (2016). RF wafer probing with improved contact repeatability using nanometer positioning. In 87th ARFTG Microwave Measurement Conference Dig, San Francisco, CA, pp. 1–4.
5.
go back to reference Yu, Z., & Burke, P. J. (2005). Microwave transport in single-walled carbon nanotubes. Nano Letters, 5(7), 1403–1406.CrossRef Yu, Z., & Burke, P. J. (2005). Microwave transport in single-walled carbon nanotubes. Nano Letters, 5(7), 1403–1406.CrossRef
6.
go back to reference Wallis, T., Imtiaz, A., Nembach, H., Bertness, K. A., Sanford, N. A., Blanchard, P. T., & Kabos, P. (2008). Calibrated broadband electrical characterization of nanowires. In 2008 Conference on Precision Electromagnetic Measurements Digest, Broomfield, CO, pp. 684–685. Wallis, T., Imtiaz, A., Nembach, H., Bertness, K. A., Sanford, N. A., Blanchard, P. T., & Kabos, P. (2008). Calibrated broadband electrical characterization of nanowires. In 2008 Conference on Precision Electromagnetic Measurements Digest, Broomfield, CO, pp. 684–685.
7.
go back to reference Nougaret, L., Dambrine, G., Lepilliet, S., Happy, H., Chimot, N., Derycke, V., & Bourgoin, J.-P. (2010). Gigahertz characterization of a single carbon nanotube. Applied Physics Letters, 96(4), 042109-1–042109-3.CrossRef Nougaret, L., Dambrine, G., Lepilliet, S., Happy, H., Chimot, N., Derycke, V., & Bourgoin, J.-P. (2010). Gigahertz characterization of a single carbon nanotube. Applied Physics Letters, 96(4), 042109-1–042109-3.CrossRef
8.
go back to reference Li, S., Yu, Z., Yen, S.-F., Tang, W. C., & Burke, P. J. (2004). Carbon nanotube transistor operation at 2.6 GHz. Nano Letters, 4(4), 753–756.CrossRef Li, S., Yu, Z., Yen, S.-F., Tang, W. C., & Burke, P. J. (2004). Carbon nanotube transistor operation at 2.6 GHz. Nano Letters, 4(4), 753–756.CrossRef
9.
go back to reference Rosenblatt, S., Lin, H., Sazonova, V., Tiwari, S., & McEuen, P. L. (2005). Mixing at 50 GHz using a single-walled carbon nanotube transistor. Applied Physics Letters, 87(15), 153111.CrossRef Rosenblatt, S., Lin, H., Sazonova, V., Tiwari, S., & McEuen, P. L. (2005). Mixing at 50 GHz using a single-walled carbon nanotube transistor. Applied Physics Letters, 87(15), 153111.CrossRef
10.
go back to reference El Fellahi, A., Haddadi, K., Marzouk, J., Arscott, S., Boyaval, C., Lasri, T., & Dambrine, G. (2015). Integrated MEMS RF probe for SEM station—Pad size and parasitic capacitance reduction. IEEE Microwave and Wireless Components Letters, 25(10), 693–695.CrossRef El Fellahi, A., Haddadi, K., Marzouk, J., Arscott, S., Boyaval, C., Lasri, T., & Dambrine, G. (2015). Integrated MEMS RF probe for SEM station—Pad size and parasitic capacitance reduction. IEEE Microwave and Wireless Components Letters, 25(10), 693–695.CrossRef
11.
go back to reference Marzouk, J., Arscott, S., El Fellahi, A., Haddadi, K., Lasri, T., Boyaval, C., & Dambrine, G. (2015). MEMS probes for on-wafer RF microwave characterization of future microelectronics: design, fabrication and characterization. Journal of Micromechanics and Microengineering—IOPscience, 25(7). Marzouk, J., Arscott, S., El Fellahi, A., Haddadi, K., Lasri, T., Boyaval, C., & Dambrine, G. (2015). MEMS probes for on-wafer RF microwave characterization of future microelectronics: design, fabrication and characterization. Journal of Micromechanics and Microengineering—IOPscience, 25(7).
12.
go back to reference El Fellahi, A., Haddadi, K., Marzouk, J., Arscott, S., Boyaval, C., Lasri, T., & Dambrine, G. (2015, September). Nanorobotic RF probe station for calibrated on-wafer measurements. In 45th European Microwave Conference, Paris, France, pp. 1–4. El Fellahi, A., Haddadi, K., Marzouk, J., Arscott, S., Boyaval, C., Lasri, T., & Dambrine, G. (2015, September). Nanorobotic RF probe station for calibrated on-wafer measurements. In 45th European Microwave Conference, Paris, France, pp. 1–4.
13.
go back to reference Reichelt, R. (2007). Scanning electron microscopy. In Science of microscopy (pp. 133–272). New-York: Springer.CrossRef Reichelt, R. (2007). Scanning electron microscopy. In Science of microscopy (pp. 133–272). New-York: Springer.CrossRef
15.
go back to reference National instruments NI. LabVIEW control design user manual. National instruments NI. LabVIEW control design user manual.
16.
go back to reference Halvorsen, H.-P., Department of Electrical Engineering, Information Technology and Cybernetics. Control and simulation in LabVIEW. Halvorsen, H.-P., Department of Electrical Engineering, Information Technology and Cybernetics. Control and simulation in LabVIEW.
17.
go back to reference Harris, C., & Stephens, M. (1988). A combined corner and edge detector. In 4th Alvey Vision Conference, pp. 147–151. Harris, C., & Stephens, M. (1988). A combined corner and edge detector. In 4th Alvey Vision Conference, pp. 147–151.
18.
go back to reference Mikolajczyk, K., & Schmid, C. (2002). An affine invariant interest point detector. In A. Heyden et al. (Eds.), ECCV 2002, LNCS 2350 (pp. 128–142). Berlin; Heidelberg: Springer. Mikolajczyk, K., & Schmid, C. (2002). An affine invariant interest point detector. In A. Heyden et al. (Eds.), ECCV 2002, LNCS 2350 (pp. 128–142). Berlin; Heidelberg: Springer.
Metadata
Title
Control and Automation for Miniaturized Microwave GSG Nanoprobing
Authors
Alaa Taleb
Denis Pomorski
Christophe Boyaval
Steve Arscott
Gilles Dambrine
Kamel Haddadi
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-22587-2_24