Skip to main content
Top
Published in: Fluid Dynamics 4/2020

01-07-2020

Control of a Detonation Wave in a Channel with Obstacles Using Preliminary Gas Mixture Preparation

Authors: T. A. Zhuravskaya, V. A. Levin

Published in: Fluid Dynamics | Issue 4/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract—

Using the detailed kinetic mechanism of chemical interaction, the effect of preliminary preparation of the stoichiometric hydrogen-air mixture (dissociation of a part of molecular hydrogen and oxygen on atomic gases) on the detonation wave characteristics is investigated numerically with the aim to control detonation combustion in plane channels with obstacles. It is found that the above-mentioned partial initial dissociation can be used to prevent quenching of detonation in channels with both a single obstacle and multiple barriers. It is revealed that the mixture, obtained as a result of preparation, differs from the initial hydrogen-air mixture by the qualitatively different type of detonation re-initiation after interaction with obstacles.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Levin, V.A. and Zhuravskaya, T.A., Control of detonation combustion in a high-velocity gas mixture flow, Proceedings of the Steklov Institute of Mathematics, 2018, vol. 300, pp. 114–125.MathSciNetCrossRef Levin, V.A. and Zhuravskaya, T.A., Control of detonation combustion in a high-velocity gas mixture flow, Proceedings of the Steklov Institute of Mathematics, 2018, vol. 300, pp. 114–125.MathSciNetCrossRef
2.
go back to reference Zhuravskaya, T.A. and Levin, V.A., Investigation of certain techniques for stabilizing detonation waves in a supersonic flow, Fluid Dynamics, 2012, vol. 47, no. 6, pp. 793–801.ADSMathSciNetCrossRef Zhuravskaya, T.A. and Levin, V.A., Investigation of certain techniques for stabilizing detonation waves in a supersonic flow, Fluid Dynamics, 2012, vol. 47, no. 6, pp. 793–801.ADSMathSciNetCrossRef
3.
go back to reference Zhuravskaya, T.A. and Levin, V.A., Stability of gas mixture flow with a stabilized detonation wave in a plane channel with a constriction, Fluid Dynamics, 2016, vol. 51, no. 4, pp. 544–551.MathSciNetCrossRef Zhuravskaya, T.A. and Levin, V.A., Stability of gas mixture flow with a stabilized detonation wave in a plane channel with a constriction, Fluid Dynamics, 2016, vol. 51, no. 4, pp. 544–551.MathSciNetCrossRef
4.
go back to reference Chernyi, G.G., Unsteady gas motions in channels with permeable walls. On shock wave stability in channels, Trudy TsIAM, 1953, no. 244. Chernyi, G.G., Unsteady gas motions in channels with permeable walls. On shock wave stability in channels, Trudy TsIAM, 1953, no. 244.
5.
go back to reference Gazovaya dinamika. Izbrannoe. V 2 tomakh. Tom 1 (Gas Dynamics: Selected Studies, in 2 vols. Vol. 1), Ed. by Kraiko, A.N., Moscow: Fizmatlit, 2005. Gazovaya dinamika. Izbrannoe. V 2 tomakh. Tom 1 (Gas Dynamics: Selected Studies, in 2 vols. Vol. 1), Ed. by Kraiko, A.N., Moscow: Fizmatlit, 2005.
6.
go back to reference Golubyatnikov, A.N. and Kovalevskaya, S.D., Propagation of discontinuities against a static background, Fluid Dynamics, 2017, vol. 52, no. 2, pp. 321–328.MathSciNetCrossRef Golubyatnikov, A.N. and Kovalevskaya, S.D., Propagation of discontinuities against a static background, Fluid Dynamics, 2017, vol. 52, no. 2, pp. 321–328.MathSciNetCrossRef
7.
go back to reference Zamuraev, V.P. and Kalinina A.P., Formation of stable transonic zone in supersonic flow in an axisymmetric channel under the impact of a jet and energy sources, Vestn. Novosib. Gos. Univ.,Ser. Fizika, 2016, vol. 11, no. 4, pp. 45–51. Zamuraev, V.P. and Kalinina A.P., Formation of stable transonic zone in supersonic flow in an axisymmetric channel under the impact of a jet and energy sources, Vestn. Novosib. Gos. Univ.,Ser. Fizika, 2016, vol. 11, no. 4, pp. 45–51.
8.
go back to reference Levin, V.A. and Zhuravskaya, T.A., Controlling the position of a stabilized detonation wave in a supersonic gas mixture flow in a plane channel, Tech. Phys. Lett., 2017, vol. 43, no. 3, pp. 316–319.ADSCrossRef Levin, V.A. and Zhuravskaya, T.A., Controlling the position of a stabilized detonation wave in a supersonic gas mixture flow in a plane channel, Tech. Phys. Lett., 2017, vol. 43, no. 3, pp. 316–319.ADSCrossRef
10.
go back to reference Bedarev, I.A. and Fedorov, A.V., Mathematical modeling of the detonation wave and inert particles interaction at the macro and micro levels, J. Phys. Conf. Ser., 2017, vol. 894, no. 1, p. 012008.CrossRef Bedarev, I.A. and Fedorov, A.V., Mathematical modeling of the detonation wave and inert particles interaction at the macro and micro levels, J. Phys. Conf. Ser., 2017, vol. 894, no. 1, p. 012008.CrossRef
11.
go back to reference Vasil’ev, A.A., Pinaev, A.V., Trubitsyn, A.A., Grachev, A.Yu., Trotsyuk, A.V., Fomin, P.A., and Trilis, A.V., What is burning in coal mines: Methane or coal dust? Combust. Explos. Shock Waves, 2017, vol. 53, no. 1, pp. 8–14.CrossRef Vasil’ev, A.A., Pinaev, A.V., Trubitsyn, A.A., Grachev, A.Yu., Trotsyuk, A.V., Fomin, P.A., and Trilis, A.V., What is burning in coal mines: Methane or coal dust? Combust. Explos. Shock Waves, 2017, vol. 53, no. 1, pp. 8–14.CrossRef
12.
go back to reference Obara, T., Sentanuhady, J., Tsukada, Y., and Ohyagi, S., Reinitiation process of detonation wave behind a slit-plate, Shock Waves, 2008, vol. 18, no. 2, pp. 117–127.ADSCrossRef Obara, T., Sentanuhady, J., Tsukada, Y., and Ohyagi, S., Reinitiation process of detonation wave behind a slit-plate, Shock Waves, 2008, vol. 18, no. 2, pp. 117–127.ADSCrossRef
13.
go back to reference Qin, H., Lee, J.H.S., Wang, Z., and Zhuang, F., An experimental study on the onset processes of detonation waves downstream of a perforated plate, Proc. Combustion Institute, 2015, vol. 35, no. 2, pp. 1973–1979.CrossRef Qin, H., Lee, J.H.S., Wang, Z., and Zhuang, F., An experimental study on the onset processes of detonation waves downstream of a perforated plate, Proc. Combustion Institute, 2015, vol. 35, no. 2, pp. 1973–1979.CrossRef
14.
go back to reference Mehrjoo, N., Gao, Y., Kiyanda, C.B., Ng, H.D., and Lee, J.H.S., Effects of porous walled tubes on detonation transmission into unconfined space, Proc. Combustion Institute, 2015, vol. 35, no. 2, pp. 1981–1987.CrossRef Mehrjoo, N., Gao, Y., Kiyanda, C.B., Ng, H.D., and Lee, J.H.S., Effects of porous walled tubes on detonation transmission into unconfined space, Proc. Combustion Institute, 2015, vol. 35, no. 2, pp. 1981–1987.CrossRef
15.
go back to reference Teodorczyk, A. and Lee, J.H.S., Detonation attenuation by foams and wire meshes lining the walls, Shock Waves, 1995, vol. 4, no. 4, pp. 225–236.ADSCrossRef Teodorczyk, A. and Lee, J.H.S., Detonation attenuation by foams and wire meshes lining the walls, Shock Waves, 1995, vol. 4, no. 4, pp. 225–236.ADSCrossRef
16.
go back to reference Radulescu, M.I. and Lee, J.H.S., The failure mechanism of gaseous detonations: experiments in porous wall tubes, Combustion and Flame, 2002, vol. 131, nos. 1–2, pp. 29–46.CrossRef Radulescu, M.I. and Lee, J.H.S., The failure mechanism of gaseous detonations: experiments in porous wall tubes, Combustion and Flame, 2002, vol. 131, nos. 1–2, pp. 29–46.CrossRef
17.
go back to reference Wang, L., Ma, H., Shen, Z., and Fan, Z., Detonation characteristics of stoichiometric H2–O2 diluted with Ar/N2 in smooth and porous tubes, Experimental Thermal and Fluid Science, 2018, vol. 91, pp. 345–353.CrossRef Wang, L., Ma, H., Shen, Z., and Fan, Z., Detonation characteristics of stoichiometric H2–O2 diluted with Ar/N2 in smooth and porous tubes, Experimental Thermal and Fluid Science, 2018, vol. 91, pp. 345–353.CrossRef
18.
go back to reference Bivol, G.Yu., Golovastov, S.V., and Golub, V.V., Detonation suppression in hydrogen–air mixtures using porous coatings on the walls, Shock Waves, 2018, vol. 28, no. 5, pp. 1011–1018.ADSCrossRef Bivol, G.Yu., Golovastov, S.V., and Golub, V.V., Detonation suppression in hydrogen–air mixtures using porous coatings on the walls, Shock Waves, 2018, vol. 28, no. 5, pp. 1011–1018.ADSCrossRef
19.
go back to reference Levin, V.A. and Zhuravskaya, T.A., Detonation combustion control using preliminary preparation of the gas mixture, Tech. Phys. Lett., 2020, vol. 46, no. 2, 189–192.ADSCrossRef Levin, V.A. and Zhuravskaya, T.A., Detonation combustion control using preliminary preparation of the gas mixture, Tech. Phys. Lett., 2020, vol. 46, no. 2, 189–192.ADSCrossRef
20.
go back to reference Gurvich, L.V., Veyts, I.V., Medvedev, V.A., et al., Thermodynamic Properties of Individual Substances, Moscow: Nauka, 1979; New York: Hemisphere, 1989, Vol. 1, Part 2. Gurvich, L.V., Veyts, I.V., Medvedev, V.A., et al., Thermodynamic Properties of Individual Substances, Moscow: Nauka, 1979; New York: Hemisphere, 1989, Vol. 1, Part 2.
21.
go back to reference Bezgin, L.V., Kopchenov, V.I., Sharipov, A.S., Titova, N.S., and Starik, A.M., Evaluation of prediction ability of detailed reaction mechanisms in the combustion performance in hydrogen/air supersonic flows, Combustion Science and Technology, 2013, vol. 185, no. 1, pp. 62–94.CrossRef Bezgin, L.V., Kopchenov, V.I., Sharipov, A.S., Titova, N.S., and Starik, A.M., Evaluation of prediction ability of detailed reaction mechanisms in the combustion performance in hydrogen/air supersonic flows, Combustion Science and Technology, 2013, vol. 185, no. 1, pp. 62–94.CrossRef
22.
go back to reference Godunov, S.K., Zabrodin, A.V., Ivanov, M.Ya., Kraiko, A.N., and Prokopov, G.P., Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki (Numerical Solution of Multidimensional Problems in Gas Dynamics), Moscow: Nauka, 1976. Godunov, S.K., Zabrodin, A.V., Ivanov, M.Ya., Kraiko, A.N., and Prokopov, G.P., Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki (Numerical Solution of Multidimensional Problems in Gas Dynamics), Moscow: Nauka, 1976.
23.
go back to reference Soloukhin, R.I., Udarnye volny i detonatsiya v gazakh (Shock Waves and Detonation in Gases), Moscow: GIFML, 1963; Baltimore: Mono Book, 1966. Soloukhin, R.I., Udarnye volny i detonatsiya v gazakh (Shock Waves and Detonation in Gases), Moscow: GIFML, 1963; Baltimore: Mono Book, 1966.
24.
go back to reference Lee, J.H.S., The Detonation Phenomenon, Cambridge: Cambridge University Press, 2008.CrossRef Lee, J.H.S., The Detonation Phenomenon, Cambridge: Cambridge University Press, 2008.CrossRef
25.
go back to reference Shepherd, J.E., Chemical kinetics of hydrogen-air-diluent detonations, Progress in Astronautics and Aeronautics, 1986, vol. 106, pp. 263–293. Shepherd, J.E., Chemical kinetics of hydrogen-air-diluent detonations, Progress in Astronautics and Aeronautics, 1986, vol. 106, pp. 263–293.
26.
go back to reference Zhuravskaya, T.A., Propagation of detonation waves in plane channels with obstacles, Fluid Dynamics, 2007, vol. 42, no. 6, pp. 987–994.ADSCrossRef Zhuravskaya, T.A., Propagation of detonation waves in plane channels with obstacles, Fluid Dynamics, 2007, vol. 42, no. 6, pp. 987–994.ADSCrossRef
27.
go back to reference Bhattacharjee, R.R., Lau-Chapdelaine, S.S.M., Maines, G., Maley, L., and Radulescu, M.I., Detonation re-initiation mechanism following the Mach reflection of a quenched detonation, Proc. Combustion Institute, 2013, vol. 34, no. 2, pp. 1893–1901.CrossRef Bhattacharjee, R.R., Lau-Chapdelaine, S.S.M., Maines, G., Maley, L., and Radulescu, M.I., Detonation re-initiation mechanism following the Mach reflection of a quenched detonation, Proc. Combustion Institute, 2013, vol. 34, no. 2, pp. 1893–1901.CrossRef
28.
go back to reference Voevodin, Vl.V., Zhumatii, S.A., Sobolev, S.I., Antonov, A.S., Bryzgalov, P.A., Nikitenko, D.A., Stefanov, K.S., and Voevodin, Vad.V., Practice of the “Lomonosov” supercomputer, Otkrytye Sistemy, 2012, no. 7, pp. 36–39. Voevodin, Vl.V., Zhumatii, S.A., Sobolev, S.I., Antonov, A.S., Bryzgalov, P.A., Nikitenko, D.A., Stefanov, K.S., and Voevodin, Vad.V., Practice of the “Lomonosov” supercomputer, Otkrytye Sistemy, 2012, no. 7, pp. 36–39.
Metadata
Title
Control of a Detonation Wave in a Channel with Obstacles Using Preliminary Gas Mixture Preparation
Authors
T. A. Zhuravskaya
V. A. Levin
Publication date
01-07-2020
Publisher
Pleiades Publishing
Published in
Fluid Dynamics / Issue 4/2020
Print ISSN: 0015-4628
Electronic ISSN: 1573-8507
DOI
https://doi.org/10.1134/S0015462820040138

Other articles of this Issue 4/2020

Fluid Dynamics 4/2020 Go to the issue

Premium Partners