Skip to main content
Top

2017 | OriginalPaper | Chapter

5. Control of Mobile Robot Formations Using Aerial Cameras

Authors : Miguel Aranda, Gonzalo López-Nicolás, Carlos Sagüés

Published in: Control of Multiple Robots Using Vision Sensors

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Cameras are versatile and relatively low-cost sensors that provide a lot of useful data. Thanks to these remarkable properties, it is possible to envision a range of different setups when considering vision-based multirobot control tasks. For instance, the vision sensors may be carried by the robots that are to be controlled, or external to them. In addition, cameras can be used in the context of both centralized and distributed control strategies. In this chapter, a system setup relying on external cameras and the two-view homography is proposed, to achieve the objective of driving a set of robots moving on the ground plane to a desired geometric formation. In particular, we propose to use multiple unmanned aerial vehicles (UAVs) as control units. Each of them carries a camera that observes a subset of the ground robotic team and is employed to control it. This gives rise to a partially distributed multirobot control method, which aims to combine the optimality and simplicity of centralized approaches with the scalability and robustness of distributed strategies. Relying on a homography computed for each of the UAV-mounted cameras, our method is purely image-based and has low computational cost. We formally study its stability for unicycle-type robots. In order for the multirobot system to converge to the target formation, certain intersections must be maintained between the sets of ground robots seen by the different cameras. To this end, we also propose a distributed strategy to coordinately control the motion of the cameras by using communication of their gathered information. The effectiveness of the proposed vision-based controller is illustrated via simulations and experiments with real robots.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Sabattini L, Secchi C, Fantuzzi C (2011) Arbitrarily shaped formations of mobile robots: artificial potential fields and coordinate transformation. Auton Rob 30(4):385–397CrossRef Sabattini L, Secchi C, Fantuzzi C (2011) Arbitrarily shaped formations of mobile robots: artificial potential fields and coordinate transformation. Auton Rob 30(4):385–397CrossRef
2.
go back to reference Zavlanos MM, Pappas GJ (2007) Distributed formation control with permutation symmetries. In: IEEE conference on decision and control, pp 2894–2899 Zavlanos MM, Pappas GJ (2007) Distributed formation control with permutation symmetries. In: IEEE conference on decision and control, pp 2894–2899
3.
go back to reference Mesbahi M, Egerstedt M (2010) Graph theoretic methods in multiagent networks. Princeton University Press, PrincetonCrossRefMATH Mesbahi M, Egerstedt M (2010) Graph theoretic methods in multiagent networks. Princeton University Press, PrincetonCrossRefMATH
4.
go back to reference Hendrickx JM, Anderson BDO, Delvenne JC, Blondel VD (2007) Directed graphs for the analysis of rigidity and persistence in autonomous agent systems. Int J Robust Nonlinear Control 17(10–11):960–981MathSciNetCrossRefMATH Hendrickx JM, Anderson BDO, Delvenne JC, Blondel VD (2007) Directed graphs for the analysis of rigidity and persistence in autonomous agent systems. Int J Robust Nonlinear Control 17(10–11):960–981MathSciNetCrossRefMATH
5.
go back to reference Dimarogonas, DV, Johansson, KH (2009) Further results on the stability of distance-based multi-robot formations. In: American control conference, pp 2972–2977 Dimarogonas, DV, Johansson, KH (2009) Further results on the stability of distance-based multi-robot formations. In: American control conference, pp 2972–2977
6.
go back to reference Guo J, Lin Z, Cao M, Yan G (2010) Adaptive control schemes for mobile robot formations with triangularised structures. IET Control Theory Appl 4(9):1817–1827CrossRef Guo J, Lin Z, Cao M, Yan G (2010) Adaptive control schemes for mobile robot formations with triangularised structures. IET Control Theory Appl 4(9):1817–1827CrossRef
7.
go back to reference Dimarogonas DV, Kyriakopoulos KJ (2008) A connection between formation infeasibility and velocity alignment in kinematic multi-agent systems. Automatica 44(10):2648–2654MathSciNetCrossRefMATH Dimarogonas DV, Kyriakopoulos KJ (2008) A connection between formation infeasibility and velocity alignment in kinematic multi-agent systems. Automatica 44(10):2648–2654MathSciNetCrossRefMATH
8.
go back to reference Ji M, Egerstedt M (2007) Distributed coordination control of multiagent systems while preserving connectedness. IEEE Trans Rob 23(4):693–703CrossRef Ji M, Egerstedt M (2007) Distributed coordination control of multiagent systems while preserving connectedness. IEEE Trans Rob 23(4):693–703CrossRef
9.
go back to reference Park BS, Park JB, Choi YH (2011) Adaptive formation control of electrically driven nonholonomic mobile robots with limited information. IEEE Trans Syst Man Cybern B Cybern 41(4):1061–1075CrossRef Park BS, Park JB, Choi YH (2011) Adaptive formation control of electrically driven nonholonomic mobile robots with limited information. IEEE Trans Syst Man Cybern B Cybern 41(4):1061–1075CrossRef
10.
11.
go back to reference Dong W (2011) Flocking of multiple mobile robots based on backstepping. IEEE Trans Syst Man Cybern B Cybern 41(2):414–424CrossRef Dong W (2011) Flocking of multiple mobile robots based on backstepping. IEEE Trans Syst Man Cybern B Cybern 41(2):414–424CrossRef
12.
go back to reference Guo J, Yan G, Lin Z (2010) Cooperative control synthesis for moving-target-enclosing with changing topologies. In: IEEE international conference on robotics and automation, pp 1468–1473 Guo J, Yan G, Lin Z (2010) Cooperative control synthesis for moving-target-enclosing with changing topologies. In: IEEE international conference on robotics and automation, pp 1468–1473
13.
go back to reference Turpin M, Michael N, Kumar V (2012) Decentralized formation control with variable shapes for aerial robots. In: IEEE international conference on robotics and automation, pp 23–30 Turpin M, Michael N, Kumar V (2012) Decentralized formation control with variable shapes for aerial robots. In: IEEE international conference on robotics and automation, pp 23–30
14.
go back to reference Franchi A, Stegagno P, Oriolo G (2016) Decentralized multi-robot encirclement of a 3D target with guaranteed collision avoidance. Auton Robot 40:245–265CrossRef Franchi A, Stegagno P, Oriolo G (2016) Decentralized multi-robot encirclement of a 3D target with guaranteed collision avoidance. Auton Robot 40:245–265CrossRef
15.
go back to reference Das AK, Fierro R, Kumar V, Ostrowski JP, Spletzer J, Taylor CJ (2002) A vision-based formation control framework. IEEE Trans Robot Autom 18(5):813–825CrossRef Das AK, Fierro R, Kumar V, Ostrowski JP, Spletzer J, Taylor CJ (2002) A vision-based formation control framework. IEEE Trans Robot Autom 18(5):813–825CrossRef
16.
go back to reference Vidal R, Shakernia O, Sastry SS (2004) Following the flock: distributed formation control with omnidirectional vision-based motion segmentation and visual servoing. IEEE Robot Autom Mag 11(4):14–20CrossRef Vidal R, Shakernia O, Sastry SS (2004) Following the flock: distributed formation control with omnidirectional vision-based motion segmentation and visual servoing. IEEE Robot Autom Mag 11(4):14–20CrossRef
17.
go back to reference Moshtagh N, Michael N, Jadbabaie A, Daniilidis K (2009) Vision-based, distributed control laws for motion coordination of nonholonomic robots. IEEE Trans Rob 25(4):851–860CrossRef Moshtagh N, Michael N, Jadbabaie A, Daniilidis K (2009) Vision-based, distributed control laws for motion coordination of nonholonomic robots. IEEE Trans Rob 25(4):851–860CrossRef
18.
go back to reference Panagou D, Kumar V (2014) Cooperative visibility maintenance for leader-follower formations in obstacle environments. IEEE Trans Rob 30(4):831–844CrossRef Panagou D, Kumar V (2014) Cooperative visibility maintenance for leader-follower formations in obstacle environments. IEEE Trans Rob 30(4):831–844CrossRef
19.
go back to reference Alonso-Mora J, Breitenmoser A, Rufli M, Siegwart R, Beardsley P (2012) Image and animation display with multiple mobile robots. Int J Robot Res 31(6):753–773CrossRef Alonso-Mora J, Breitenmoser A, Rufli M, Siegwart R, Beardsley P (2012) Image and animation display with multiple mobile robots. Int J Robot Res 31(6):753–773CrossRef
20.
go back to reference López-Nicolás G, Aranda M, Mezouar Y, Sagüés C (2012) Visual control for multirobot organized rendezvous. IEEE Trans Sys Man Cybern Part B Cybern 42(4):1155–1168CrossRef López-Nicolás G, Aranda M, Mezouar Y, Sagüés C (2012) Visual control for multirobot organized rendezvous. IEEE Trans Sys Man Cybern Part B Cybern 42(4):1155–1168CrossRef
21.
go back to reference Montijano E, Thunberg J, Hu X, Sagüés C (2013) Epipolar visual servoing for multirobot distributed consensus. IEEE Trans Rob 29(5):1212–1225CrossRef Montijano E, Thunberg J, Hu X, Sagüés C (2013) Epipolar visual servoing for multirobot distributed consensus. IEEE Trans Rob 29(5):1212–1225CrossRef
22.
go back to reference Schwager M, Julian B, Angermann M, Rus D (2011) Eyes in the sky: decentralized control for the deployment of robotic camera networks. Proc IEEE 99(9):1541–1561CrossRef Schwager M, Julian B, Angermann M, Rus D (2011) Eyes in the sky: decentralized control for the deployment of robotic camera networks. Proc IEEE 99(9):1541–1561CrossRef
23.
go back to reference Ding XC, Rahmani A, Egerstedt M (2010) Multi-UAV convoy protection: an optimal approach to path planning and coordination. IEEE Trans Rob 26(2):256–268CrossRef Ding XC, Rahmani A, Egerstedt M (2010) Multi-UAV convoy protection: an optimal approach to path planning and coordination. IEEE Trans Rob 26(2):256–268CrossRef
24.
go back to reference Lin F, Dong X, Chen BM, Lum KY, Lee TH (2012) A robust real-time embedded vision system on an unmanned rotorcraft for ground target following. IEEE Trans Ind Electron 59(2):1038–1049CrossRef Lin F, Dong X, Chen BM, Lum KY, Lee TH (2012) A robust real-time embedded vision system on an unmanned rotorcraft for ground target following. IEEE Trans Ind Electron 59(2):1038–1049CrossRef
25.
go back to reference Merino L, Wiklund J, Caballero F, Moe A, De Dios JRM, Forssen PE, Nordberg K, Ollero A (2006) Vision-based multi-UAV position estimation. IEEE Robot Autom Mag 13(3):53–62CrossRef Merino L, Wiklund J, Caballero F, Moe A, De Dios JRM, Forssen PE, Nordberg K, Ollero A (2006) Vision-based multi-UAV position estimation. IEEE Robot Autom Mag 13(3):53–62CrossRef
26.
27.
go back to reference Montijano E, Zhou D, Schwager M, Sagüés C (2014) Distributed formation control without a global reference frame. In: American control conference, pp 3862–3867 Montijano E, Zhou D, Schwager M, Sagüés C (2014) Distributed formation control without a global reference frame. In: American control conference, pp 3862–3867
28.
go back to reference Aranda M, Mezouar Y, López-Nicolás G, Sagüés C (2013) Partially distributed multirobot control with multiple cameras. In: American control conference, pp 6323–6329 Aranda M, Mezouar Y, López-Nicolás G, Sagüés C (2013) Partially distributed multirobot control with multiple cameras. In: American control conference, pp 6323–6329
Metadata
Title
Control of Mobile Robot Formations Using Aerial Cameras
Authors
Miguel Aranda
Gonzalo López-Nicolás
Carlos Sagüés
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-57828-6_5