Abstract
Range extender is the core component of E-REV, its start-stop control determines the operation modes of vehicle. This paper based on a certain type of E-REV, optimized the control strategy for range extender start-stop with different driving cycle conditions and target mileage, and conducted the modeling and co-simulation of E-REV with Advisor and Simulink software. The simulation results with chosen driving cycle conditions indicated that certain target mileage, by correcting the battery SOC of range extender start-stop moment can reduce the running time of the range extender, reached the purpose of meeting the vehicle mileage and reducing consumption and emission at the same time.