Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2022 | OriginalPaper | Chapter

3. Controlled Growths of Carbon Nanotubes and Graphene

Author : Yanjie Su

Published in: High-Performance Carbon-Based Optoelectronic Nanodevices

Publisher: Springer Singapore

Abstract

The large-scale controlled synthesis of high-quality single-walled carbon nanotubes (SWCNTs) and graphene are the basis of high-performance carbon-based electronic and photoelectric devices. With the rapid development of synthesis and characterization techniques, great achievements have been made in understanding the nucleation and growth mechanisms of SWCNTs and graphene, thereby promoting the development of the selective synthesis of specific SWCNTs and large-area graphene. Since carbon-based photoelectric devices in this book are mainly fabricated using SWCNTs and graphene, we mainly introduce the synthesis of SWCNTs and chemical vapor deposition (CVD) graphene in this chapter. The recent advances in the controlled synthesis of SWCNTs will be highlighted. And then, the main achievements in the CVD growth of graphene will be summarized. Finally, the current challenges will also be summarized and further perspectives are given.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Iijima S (1991). Helical microtubules of graphitic carbon. Nature, 354(6348): 56–58. CrossRef Iijima S (1991). Helical microtubules of graphitic carbon. Nature, 354(6348): 56–58. CrossRef
2.
go back to reference Iijima S, Ichihashi T (1993). Single-shell carbon nanotubes of 1-nm diameter. Nature, 363(6430): 603–605. CrossRef Iijima S, Ichihashi T (1993). Single-shell carbon nanotubes of 1-nm diameter. Nature, 363(6430): 603–605. CrossRef
3.
go back to reference Bethune DS, Kiang CH, De Vries MS, Gorman G, Savoy R, Vazquez J, Beyers R (1993). Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature, 363(6430): 605–607. CrossRef Bethune DS, Kiang CH, De Vries MS, Gorman G, Savoy R, Vazquez J, Beyers R (1993). Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature, 363(6430): 605–607. CrossRef
4.
go back to reference Keidar M, Levchenko I, Arbel T (2018). Magnetic-field-enhanced synthesis of single-wall carbon nanotubes in arc discharge. J Appl Phys, 103(9): 094318. Keidar M, Levchenko I, Arbel T (2018). Magnetic-field-enhanced synthesis of single-wall carbon nanotubes in arc discharge. J Appl Phys, 103(9): 094318.
5.
go back to reference Keidar M, Levchenko I, Arbel T, Alexander M, Waas AM, Ostrikov K (2008). Increasing the length of single-wall carbon nanotubes in a magnetically enhanced arc discharge. Appl Phys Lett, 92(4): 043129. Keidar M, Levchenko I, Arbel T, Alexander M, Waas AM, Ostrikov K (2008). Increasing the length of single-wall carbon nanotubes in a magnetically enhanced arc discharge. Appl Phys Lett, 92(4): 043129.
6.
go back to reference Su Y, Yang Z, Wei H, Kong Eirc, Zhang Y (2011). Synthesis of single-walled carbon nanotubes with selective diameter distributions using DC arc discharge under CO mixed atmosphere. Appl Surf Sci, 257(7): 3123–3127. CrossRef Su Y, Yang Z, Wei H, Kong Eirc, Zhang Y (2011). Synthesis of single-walled carbon nanotubes with selective diameter distributions using DC arc discharge under CO mixed atmosphere. Appl Surf Sci, 257(7): 3123–3127. CrossRef
7.
go back to reference Fang L, Sheng L, An K, Yu L, Ren W, Ando Y, Zhao X (2013). Effect of adding W to Fe catalyst on the synthesis of SWCNTs by arc discharge. Physica E, 50: 116–121. CrossRef Fang L, Sheng L, An K, Yu L, Ren W, Ando Y, Zhao X (2013). Effect of adding W to Fe catalyst on the synthesis of SWCNTs by arc discharge. Physica E, 50: 116–121. CrossRef
8.
go back to reference Su YJ, Zhang Y, Wei H, Zhang LL, Zhao J, Yang Z, Zhang YF (2012). Magnetic-field-induced diameter-selective synthesis of single-walled carbon nanotubes. Nanoscale, 4(5): 1717–1721. CrossRef Su YJ, Zhang Y, Wei H, Zhang LL, Zhao J, Yang Z, Zhang YF (2012). Magnetic-field-induced diameter-selective synthesis of single-walled carbon nanotubes. Nanoscale, 4(5): 1717–1721. CrossRef
9.
go back to reference Saito Y, Okuda M, Koyama T (1996). Carbon nanocapsules and single-wall nanotubes formed by arc evaporation. Surf Rev Lett, 3(1): 863–867. CrossRef Saito Y, Okuda M, Koyama T (1996). Carbon nanocapsules and single-wall nanotubes formed by arc evaporation. Surf Rev Lett, 3(1): 863–867. CrossRef
10.
go back to reference Saito Y, Tani Y, Miyagawa N, Mitsushima K, Kasuya A, Nishina Y (1998). High yield of single wall carbon nanotubes by arc discharge using Rh-Pt mixed catalysts, Chem Phys Let, 294: 593–598. CrossRef Saito Y, Tani Y, Miyagawa N, Mitsushima K, Kasuya A, Nishina Y (1998). High yield of single wall carbon nanotubes by arc discharge using Rh-Pt mixed catalysts, Chem Phys Let, 294: 593–598. CrossRef
11.
go back to reference Liu C, Cong H T, Li F, Tan P H, Cheng H M (1999). Semi-continuous synthesis of single-walled carbon nanotubes by a hydrogen arc discharge method. Carbon, 37(11): 1865–1868. CrossRef Liu C, Cong H T, Li F, Tan P H, Cheng H M (1999). Semi-continuous synthesis of single-walled carbon nanotubes by a hydrogen arc discharge method. Carbon, 37(11): 1865–1868. CrossRef
12.
go back to reference Zhao X, Inoue S, Jinno M, Suzuki T, Ando Y (2003). Macroscopic oriented web of single-wall carbon nanotubes. Chem Phys Lett, 373(3–4): 266–271. CrossRef Zhao X, Inoue S, Jinno M, Suzuki T, Ando Y (2003). Macroscopic oriented web of single-wall carbon nanotubes. Chem Phys Lett, 373(3–4): 266–271. CrossRef
13.
go back to reference Journet C, Maser W K, Bernier P, Loiseau A, DL Chapelle ML, Lee R, Fischer JE(1997). Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature, 388(6644): 756–758. Journet C, Maser W K, Bernier P, Loiseau A, DL Chapelle ML, Lee R, Fischer JE(1997). Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature, 388(6644): 756–758.
14.
go back to reference Yudasaka M, Sensui N, Takizawa M, Bandow S, Ichihashi T, Iijima S (1999). Formation of single-wall carbon nanotubes catalyzed by Ni separating from Y in laser ablation or in arc discharge using a C target containing a NiY catalyst. Chem Phys Lett, 312(2–4): 155–160. CrossRef Yudasaka M, Sensui N, Takizawa M, Bandow S, Ichihashi T, Iijima S (1999). Formation of single-wall carbon nanotubes catalyzed by Ni separating from Y in laser ablation or in arc discharge using a C target containing a NiY catalyst. Chem Phys Lett, 312(2–4): 155–160. CrossRef
15.
go back to reference Shi Z, Lian Y, Zhou X, Gu Z, Zhang Y, Iijima S, Zhang S (1999). Mass production of single-wall carbon nanotubes by arc discharge method, Carbon, 37(9): 1449–1453. CrossRef Shi Z, Lian Y, Zhou X, Gu Z, Zhang Y, Iijima S, Zhang S (1999). Mass production of single-wall carbon nanotubes by arc discharge method, Carbon, 37(9): 1449–1453. CrossRef
16.
go back to reference He D, Zhao T, Liu Y, Zhu J, Yu G, Ge L (2007). The effect of electric current on the synthesis of single-walled carbon nanotubes by temperature controlled arc discharge. Diam. Relat Mater, 16: 1722–1726. CrossRef He D, Zhao T, Liu Y, Zhu J, Yu G, Ge L (2007). The effect of electric current on the synthesis of single-walled carbon nanotubes by temperature controlled arc discharge. Diam. Relat Mater, 16: 1722–1726. CrossRef
17.
go back to reference Su YJ, Zhang YZ, Wei H, Qian BJ, Yang Z, Zhang YF (2012). Length-controlled synthesis of single-walled carbon nanotubes by arc discharge with variable cathode diameters. Physica E, 44(7–8): 1548–1551. CrossRef Su YJ, Zhang YZ, Wei H, Qian BJ, Yang Z, Zhang YF (2012). Length-controlled synthesis of single-walled carbon nanotubes by arc discharge with variable cathode diameters. Physica E, 44(7–8): 1548–1551. CrossRef
18.
go back to reference Shi Z, Lian Y, Liao FH, Zhou X, Gu Z, Zhang Y, Zhang SL (2000). Large scale synthesis of single-wall carbon nanotubes by arc-discharge method. J Phys Chem Solid, 61(7): 1031–1036. CrossRef Shi Z, Lian Y, Liao FH, Zhou X, Gu Z, Zhang Y, Zhang SL (2000). Large scale synthesis of single-wall carbon nanotubes by arc-discharge method. J Phys Chem Solid, 61(7): 1031–1036. CrossRef
19.
go back to reference Park YS, Kim KS, Jeong HJ, Kim WS, Moon JM, An KH, Lee YH (2002). Low pressure synthesis of single-walled carbon nanotubes by arc discharge. Synthetic Metals, 126(2–3): 245–251. CrossRef Park YS, Kim KS, Jeong HJ, Kim WS, Moon JM, An KH, Lee YH (2002). Low pressure synthesis of single-walled carbon nanotubes by arc discharge. Synthetic Metals, 126(2–3): 245–251. CrossRef
20.
go back to reference Farhat S, Lamy de La Chapelle M, Loiseau A, Scott C D, Lefrant S, Journet C, Bernier, P (2001). Diameter control of single-walled carbon nanotubes using argon-helium mixture gases. J Chem Phys, 115(14): 6752–6759. CrossRef Farhat S, Lamy de La Chapelle M, Loiseau A, Scott C D, Lefrant S, Journet C, Bernier, P (2001). Diameter control of single-walled carbon nanotubes using argon-helium mixture gases. J Chem Phys, 115(14): 6752–6759. CrossRef
21.
go back to reference Su Y, Wei H, Li T, Geng HJ, Zhang YF (2014). Low-cost synthesis of single-walled carbon nanotubes by low-pressure air arc discharge. Mater Res Bull, 50: 23–25. CrossRef Su Y, Wei H, Li T, Geng HJ, Zhang YF (2014). Low-cost synthesis of single-walled carbon nanotubes by low-pressure air arc discharge. Mater Res Bull, 50: 23–25. CrossRef
22.
go back to reference Ando Y, Zhao X, Inoue S, Suzuki T, Kadoya T (2005). Mass production of high-quality single-wall carbon nanotubes by H 2-N 2 arc discharge. Diamond Relat Mater, 14(3–7): 729–732. CrossRef Ando Y, Zhao X, Inoue S, Suzuki T, Kadoya T (2005). Mass production of high-quality single-wall carbon nanotubes by H 2-N 2 arc discharge. Diamond Relat Mater, 14(3–7): 729–732. CrossRef
23.
go back to reference Zhao X, Ohkohchi M, Inoue S, Suzuki T, Kadoya T, Ando Y (2006). Large-scale purification of single-wall carbon nanotubes prepared by electric arc discharge. Diamond Relat Mater, 15(4–8): 1098–1102. CrossRef Zhao X, Ohkohchi M, Inoue S, Suzuki T, Kadoya T, Ando Y (2006). Large-scale purification of single-wall carbon nanotubes prepared by electric arc discharge. Diamond Relat Mater, 15(4–8): 1098–1102. CrossRef
24.
go back to reference Fetterman AJ, Raitses Y, Keidar M (2008). Enhanced ablation of small anodes in a carbon nanotube arc plasma. Carbon, 46(10): 1322–1326. CrossRef Fetterman AJ, Raitses Y, Keidar M (2008). Enhanced ablation of small anodes in a carbon nanotube arc plasma. Carbon, 46(10): 1322–1326. CrossRef
25.
go back to reference Huang H, Marie J, Kajiura H, Ata M (2002). Improved oxidation resistance of single-walled carbon nanotubes produced by arc discharge in a bowl-like cathode. Nano Lett, 2(10): 1117–1119. CrossRef Huang H, Marie J, Kajiura H, Ata M (2002). Improved oxidation resistance of single-walled carbon nanotubes produced by arc discharge in a bowl-like cathode. Nano Lett, 2(10): 1117–1119. CrossRef
26.
go back to reference Zhao T, Liu Y (2004). Large scale and high purity synthesis of single-walled carbon nanotubes by arc discharge at controlled temperature. Carbon, 42: 2765–2777. CrossRef Zhao T, Liu Y (2004). Large scale and high purity synthesis of single-walled carbon nanotubes by arc discharge at controlled temperature. Carbon, 42: 2765–2777. CrossRef
27.
go back to reference Saha S, Page AJ (2016). The influence of magnetic moment on carbon nanotube nucleation. Carbon, 105: 136–143. CrossRef Saha S, Page AJ (2016). The influence of magnetic moment on carbon nanotube nucleation. Carbon, 105: 136–143. CrossRef
28.
go back to reference Volotskova O, Fagan JA, Huh JY, Phelan J, Frederick R, Keidar M (2010). Tailored distribution of single-wall carbon nanotubes from arc plasma synthesis using magnetic fields. ACS nano, 4(9): 5187–5192. CrossRef Volotskova O, Fagan JA, Huh JY, Phelan J, Frederick R, Keidar M (2010). Tailored distribution of single-wall carbon nanotubes from arc plasma synthesis using magnetic fields. ACS nano, 4(9): 5187–5192. CrossRef
29.
go back to reference Yokomichi H, Ichihara M, Kishimoto N (2014). Magnetically induced changes in diameter and deposition rate of single-walled carbon nanotubes in arc discharge. Jpn J Appl Phys, 53(2): 02BD05. Yokomichi H, Ichihara M, Kishimoto N (2014). Magnetically induced changes in diameter and deposition rate of single-walled carbon nanotubes in arc discharge. Jpn J Appl Phys, 53(2): 02BD05.
30.
go back to reference Su Y, Zhang YZ, Wei H, Yang Z, Kong ESW, Zhang YF (2012). Diameter-control of single-walled carbon nanotubes produced by magnetic field-assisted arc discharge. Carbon, 50(7): 2556–2562. CrossRef Su Y, Zhang YZ, Wei H, Yang Z, Kong ESW, Zhang YF (2012). Diameter-control of single-walled carbon nanotubes produced by magnetic field-assisted arc discharge. Carbon, 50(7): 2556–2562. CrossRef
31.
go back to reference Guo T, Nikolaev P, Rinzler AG, Tomanek D, Colbert DT, Smalley RE (1995). Self-assembly of tubular fullerenes. J Phys Chem, 99(27): 10694–10697. CrossRef Guo T, Nikolaev P, Rinzler AG, Tomanek D, Colbert DT, Smalley RE (1995). Self-assembly of tubular fullerenes. J Phys Chem, 99(27): 10694–10697. CrossRef
32.
go back to reference Yudasaka M, Komatsu T, Ichihashi T, Lijima S (1997). Single-wall carbon nanotube formation by laser ablation using double-targets of carbon and metal. Chem Phys Lett, 278(1–3): 102–106. CrossRef Yudasaka M, Komatsu T, Ichihashi T, Lijima S (1997). Single-wall carbon nanotube formation by laser ablation using double-targets of carbon and metal. Chem Phys Lett, 278(1–3): 102–106. CrossRef
33.
go back to reference Maser WK, Munoz E, Benito AM, De La Fuente GF, Maniette Y, Sauvajol JL (1998). Production of high-density single-walled nanotube material by a simple laser-ablation method. Chem Phys Lett, 292(4–6): 587–593. CrossRef Maser WK, Munoz E, Benito AM, De La Fuente GF, Maniette Y, Sauvajol JL (1998). Production of high-density single-walled nanotube material by a simple laser-ablation method. Chem Phys Lett, 292(4–6): 587–593. CrossRef
34.
go back to reference Lin X, Rümmeli MH, Gemming T, Pichler T, Valentin D, Ruani G, Taliani C (2007). Single-wall carbon nanotubes prepared with different kinds of Ni-Co catalysts: Raman and optical spectrum analysis. Carbon, 45(1): 196–202. CrossRef Lin X, Rümmeli MH, Gemming T, Pichler T, Valentin D, Ruani G, Taliani C (2007). Single-wall carbon nanotubes prepared with different kinds of Ni-Co catalysts: Raman and optical spectrum analysis. Carbon, 45(1): 196–202. CrossRef
35.
go back to reference Munoz E, Maser W K, Benito A M, De La F GF, Maniette Y, Righi A, Anglaret E Sauvajol JL (2000). Gas and pressure effects on the production of single-walled carbon nanotubes by laser ablation. Carbon, 38(10): 1445–1451. CrossRef Munoz E, Maser W K, Benito A M, De La F GF, Maniette Y, Righi A, Anglaret E Sauvajol JL (2000). Gas and pressure effects on the production of single-walled carbon nanotubes by laser ablation. Carbon, 38(10): 1445–1451. CrossRef
36.
go back to reference Maser WK, Benito AM, Martınez MT (2002). Production of carbon nanotubes: the light approach. Carbon, 40(10): 1685–1695. CrossRef Maser WK, Benito AM, Martınez MT (2002). Production of carbon nanotubes: the light approach. Carbon, 40(10): 1685–1695. CrossRef
37.
go back to reference Munoz E, Maser WK, Benito AM, Martinez MT, De la Fuente GF, Righi A, Sauvajol JL, Anglaret E, Manieete Y (2000). Single-walled carbon nanotubes produced by cw CO 2-laser ablation: study of parameters important for their formation. Appl Phys A, 70(2): 145–151. CrossRef Munoz E, Maser WK, Benito AM, Martinez MT, De la Fuente GF, Righi A, Sauvajol JL, Anglaret E, Manieete Y (2000). Single-walled carbon nanotubes produced by cw CO 2-laser ablation: study of parameters important for their formation. Appl Phys A, 70(2): 145–151. CrossRef
38.
go back to reference Dillon AC, Parilla PA, Alleman JL, Perkins JD, Heben MJ (2000). Controlling single-wall nanotube diameters with variation in laser pulse power. Chem Phys Lett, 316(1–2): 13–18. CrossRef Dillon AC, Parilla PA, Alleman JL, Perkins JD, Heben MJ (2000). Controlling single-wall nanotube diameters with variation in laser pulse power. Chem Phys Lett, 316(1–2): 13–18. CrossRef
39.
go back to reference Zhang H, Ding Y, Wu C, Chen YM, Zhu YJ, He YY, Zhong S (2003). The effect of laser power on the formation of carbon nanotubes prepared in CO 2 continuous wave laser ablation at room temperature. Physica B, 325: 224–229. CrossRef Zhang H, Ding Y, Wu C, Chen YM, Zhu YJ, He YY, Zhong S (2003). The effect of laser power on the formation of carbon nanotubes prepared in CO 2 continuous wave laser ablation at room temperature. Physica B, 325: 224–229. CrossRef
40.
go back to reference Chrzanowska J, Hoffman J, Małolepszy A, Mazurkiewica M, Kowalewski TA, Szymanski Z, Stobinski L (2015). Synthesis of carbon nanotubes by the laser ablation method: Effect of laser wavelength. Physica Status Solidi (b), 252(8): 1860–1867. CrossRef Chrzanowska J, Hoffman J, Małolepszy A, Mazurkiewica M, Kowalewski TA, Szymanski Z, Stobinski L (2015). Synthesis of carbon nanotubes by the laser ablation method: Effect of laser wavelength. Physica Status Solidi (b), 252(8): 1860–1867. CrossRef
41.
go back to reference Dixit S, Singhal S, Vankar VD (2017). Size dependent Raman and absorption studies of single walled carbon nanotubes synthesized by pulse laser deposition at room temperature. Optical Mater, 72: 612–617. CrossRef Dixit S, Singhal S, Vankar VD (2017). Size dependent Raman and absorption studies of single walled carbon nanotubes synthesized by pulse laser deposition at room temperature. Optical Mater, 72: 612–617. CrossRef
42.
go back to reference Dixit S, Shukla AK (2018). Raman studies of single-walled carbon nanotubes synthesized by pulsed laser ablation at room temperature. Appl Phys A, 124(6): 1–6. CrossRef Dixit S, Shukla AK (2018). Raman studies of single-walled carbon nanotubes synthesized by pulsed laser ablation at room temperature. Appl Phys A, 124(6): 1–6. CrossRef
43.
go back to reference Spellauge M, Loghin FC, Sotrop J (2018). Ultra-short-pulse laser ablation and modification of fully sprayed single walled carbon nanotube networks. Carbon, 138: 234–242. CrossRef Spellauge M, Loghin FC, Sotrop J (2018). Ultra-short-pulse laser ablation and modification of fully sprayed single walled carbon nanotube networks. Carbon, 138: 234–242. CrossRef
44.
go back to reference Dai H, Rinzler AG, Nikolaev P, Thess A, Colbert DT, Smalley RE (1996). Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide. Chem Phys Lett, 260(3–4): 471–475. CrossRef Dai H, Rinzler AG, Nikolaev P, Thess A, Colbert DT, Smalley RE (1996). Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide. Chem Phys Lett, 260(3–4): 471–475. CrossRef
45.
go back to reference Kong J, Cassell AM, Dai H (1998). Chemical vapor deposition of methane for single-walled carbon nanotubes. Chem Phys Lett, 292(4–6): 567–574. CrossRef Kong J, Cassell AM, Dai H (1998). Chemical vapor deposition of methane for single-walled carbon nanotubes. Chem Phys Lett, 292(4–6): 567–574. CrossRef
46.
go back to reference Cheng HM, Li F, Su G, Pan HY, He LL, Sun X, Dresselhaus MS (1998). Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons. Appl Phys Lett, 72(25): 3282–3284. CrossRef Cheng HM, Li F, Su G, Pan HY, He LL, Sun X, Dresselhaus MS (1998). Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons. Appl Phys Lett, 72(25): 3282–3284. CrossRef
47.
go back to reference Singh C, Shaffer MSP, Windle AH (2003). Production of controlled architectures of aligned carbon nanotubes by an injection chemical vapour deposition method. Carbon, 41(2): 359–368. CrossRef Singh C, Shaffer MSP, Windle AH (2003). Production of controlled architectures of aligned carbon nanotubes by an injection chemical vapour deposition method. Carbon, 41(2): 359–368. CrossRef
48.
go back to reference Nasibulin AG, Moisala A, Brown DP, Jiang H, Kauppinen EI (2005). A novel aerosol method for single walled carbon nanotube synthesis. Chem Phys Lett, 402(1–3): 227–232. CrossRef Nasibulin AG, Moisala A, Brown DP, Jiang H, Kauppinen EI (2005). A novel aerosol method for single walled carbon nanotube synthesis. Chem Phys Lett, 402(1–3): 227–232. CrossRef
49.
go back to reference Tian Y, Timmermans MY, Partanen M, Nasibulin AG, Jiang H, Zhu Z, Kauppinen EI (2011). Growth of single-walled carbon nanotubes with controlled diameters and lengths by an aerosol method. Carbon, 49(14): 4636–4643. CrossRef Tian Y, Timmermans MY, Partanen M, Nasibulin AG, Jiang H, Zhu Z, Kauppinen EI (2011). Growth of single-walled carbon nanotubes with controlled diameters and lengths by an aerosol method. Carbon, 49(14): 4636–4643. CrossRef
50.
go back to reference Nikolaev P, Bronikowski MJ, Bradley RK, Rohmund F, Colbert DT, Smith KA, Smalley RE (1999). Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem Phys Lett, 313(1–2): 91–97. CrossRef Nikolaev P, Bronikowski MJ, Bradley RK, Rohmund F, Colbert DT, Smith KA, Smalley RE (1999). Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem Phys Lett, 313(1–2): 91–97. CrossRef
51.
go back to reference Bronikowski MJ, Willis PA, Colbert DT, Smith KA, Smalley RE (2001). Gas-phase production of carbon single-walled nanotubes from carbon monoxide via the HiPco process: A parametric study. J Vacuum Sci Tech A, 19(4): 1800–1805. CrossRef Bronikowski MJ, Willis PA, Colbert DT, Smith KA, Smalley RE (2001). Gas-phase production of carbon single-walled nanotubes from carbon monoxide via the HiPco process: A parametric study. J Vacuum Sci Tech A, 19(4): 1800–1805. CrossRef
52.
go back to reference Liao Y, Hussain A, Laiho P, Zhang Q, Tian Y, Wei N, Ding EX, Khan SA, Nguyen NN, Ahmad S, Kauppinen EI (2018). Tuning geometry of SWCNTs by CO 2 in floating catalyst CVD for high-performance transparent conductive films. Adv Mater Interfaces, 5(23): 1801209. CrossRef Liao Y, Hussain A, Laiho P, Zhang Q, Tian Y, Wei N, Ding EX, Khan SA, Nguyen NN, Ahmad S, Kauppinen EI (2018). Tuning geometry of SWCNTs by CO 2 in floating catalyst CVD for high-performance transparent conductive films. Adv Mater Interfaces, 5(23): 1801209. CrossRef
53.
go back to reference Hussain A, Liao Y, Zhang Q, Ding EX, Laiho P, Ahmad S, Wei N, Tian Y, Jiang H, Kauppinen EI (2018). Floating catalyst CVD synthesis of single walled carbon nanotubes from ethylene for high performance transparent electrodes. Nanoscale, 10(20): 9752–9759. CrossRef Hussain A, Liao Y, Zhang Q, Ding EX, Laiho P, Ahmad S, Wei N, Tian Y, Jiang H, Kauppinen EI (2018). Floating catalyst CVD synthesis of single walled carbon nanotubes from ethylene for high performance transparent electrodes. Nanoscale, 10(20): 9752–9759. CrossRef
54.
go back to reference Yadav MD, Dasgupta K, Patwardhan AW, Kaushal A, Joshi JB (2019). Kinetic study of single-walled carbon nanotube synthesis by thermocatalytic decomposition of methane using floating catalyst chemical vapour deposition. Chem Eng Sci, 196: 91–103. CrossRef Yadav MD, Dasgupta K, Patwardhan AW, Kaushal A, Joshi JB (2019). Kinetic study of single-walled carbon nanotube synthesis by thermocatalytic decomposition of methane using floating catalyst chemical vapour deposition. Chem Eng Sci, 196: 91–103. CrossRef
55.
go back to reference Hou PX, Li WS, Zhao SY, Li GX, Shi C, Liu C, Cheng HM (2014). Preparation of metallic single-wall carbon nanotubes by selective etching. ACS Nano, 8(7): 7156–7162. CrossRef Hou PX, Li WS, Zhao SY, Li GX, Shi C, Liu C, Cheng HM (2014). Preparation of metallic single-wall carbon nanotubes by selective etching. ACS Nano, 8(7): 7156–7162. CrossRef
56.
go back to reference Ding EX, Jiang H, Zhang Q, Tian Y, Laiho P, Hussain A, Liao Y, Wei N, Kauppinen EI (2017). Highly conductive and transparent single-walled carbon nanotube thin films from ethanol by floating catalyst chemical vapor deposition. Nanoscale, 9(44):17601–17609. CrossRef Ding EX, Jiang H, Zhang Q, Tian Y, Laiho P, Hussain A, Liao Y, Wei N, Kauppinen EI (2017). Highly conductive and transparent single-walled carbon nanotube thin films from ethanol by floating catalyst chemical vapor deposition. Nanoscale, 9(44):17601–17609. CrossRef
57.
go back to reference Ahmad S, Liao Y, Hussain A, Zhang Q, Ding EX, Jiang H, Kauppinen EI (2019). Systematic investigation of the catalyst composition effects on single-walled carbon nanotubes synthesis in floating-catalyst CVD. Carbon, 149: 318–327. CrossRef Ahmad S, Liao Y, Hussain A, Zhang Q, Ding EX, Jiang H, Kauppinen EI (2019). Systematic investigation of the catalyst composition effects on single-walled carbon nanotubes synthesis in floating-catalyst CVD. Carbon, 149: 318–327. CrossRef
58.
go back to reference Wang Y, Wei F, Luo GH, Yu H, Gu GS (2002). The large-scale production of carbon nanotubes in a nano-agglomerate fluidized-bed reactor. Chem Phys Lett, 364 (5–6): 568–572. CrossRef Wang Y, Wei F, Luo GH, Yu H, Gu GS (2002). The large-scale production of carbon nanotubes in a nano-agglomerate fluidized-bed reactor. Chem Phys Lett, 364 (5–6): 568–572. CrossRef
59.
go back to reference Dasgupta, K, Joshi, JB, Banerjee S (2011). Fluidized bed synthesis of carbon nanotubes-A review. Chem Eng J, 171(3): 841–869. CrossRef Dasgupta, K, Joshi, JB, Banerjee S (2011). Fluidized bed synthesis of carbon nanotubes-A review. Chem Eng J, 171(3): 841–869. CrossRef
60.
go back to reference Li Y. L, Kinloch IA, Shaffer MS, Geng J, Johnson B, Windle AH (2004). Synthesis of single-walled carbon nanotubes by a fluidized-bed method. Chem Phys Lett, 384(1–3): 98–102. CrossRef Li Y. L, Kinloch IA, Shaffer MS, Geng J, Johnson B, Windle AH (2004). Synthesis of single-walled carbon nanotubes by a fluidized-bed method. Chem Phys Lett, 384(1–3): 98–102. CrossRef
61.
go back to reference Zhao MQ, Zhang Q, Huang JQ, Nie JQ, Wei F (2010). Layered double hydroxides as catalysts for the efficient growth of high quality single-walled carbon nanotubes in a fluidized bed reactor. Carbon, 48(11): 3260–3270. CrossRef Zhao MQ, Zhang Q, Huang JQ, Nie JQ, Wei F (2010). Layered double hydroxides as catalysts for the efficient growth of high quality single-walled carbon nanotubes in a fluidized bed reactor. Carbon, 48(11): 3260–3270. CrossRef
62.
go back to reference Li M, Hachiya S, Chen Z, Osawa T, Sugime H, Noda S (2021). Fluidized-bed production of 0.3 mm-long single-wall carbon nanotubes at 28% carbon yield with 0.1 mass% catalyst impurities using ethylene and carbon dioxide. Carbon, 182: 23–31. CrossRef Li M, Hachiya S, Chen Z, Osawa T, Sugime H, Noda S (2021). Fluidized-bed production of 0.3 mm-long single-wall carbon nanotubes at 28% carbon yield with 0.1 mass% catalyst impurities using ethylene and carbon dioxide. Carbon, 182: 23–31. CrossRef
63.
go back to reference Maruyama T (2018). Current status of single-walled carbon nanotube synthesis from metal catalysts by chemical vapor deposition. Mater Express, 8(1): 1–20. CrossRef Maruyama T (2018). Current status of single-walled carbon nanotube synthesis from metal catalysts by chemical vapor deposition. Mater Express, 8(1): 1–20. CrossRef
64.
go back to reference Kong J, Soh HT, Cassell AM, Quate CF, Dai HJ (1998). Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature, 395(6705): 878–881. CrossRef Kong J, Soh HT, Cassell AM, Quate CF, Dai HJ (1998). Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature, 395(6705): 878–881. CrossRef
65.
go back to reference Min YS, Bae EJ, Oh BS, Kang D, Park W (2005). Low-temperature growth of single-walled carbon nanotubes by water plasma chemical vapor deposition. J Am Chem Soc, 127(36): 12498–12499. CrossRef Min YS, Bae EJ, Oh BS, Kang D, Park W (2005). Low-temperature growth of single-walled carbon nanotubes by water plasma chemical vapor deposition. J Am Chem Soc, 127(36): 12498–12499. CrossRef
66.
go back to reference Harutyunyan AR, Chen G, Paronyan TM, Pigos EM, Kuznetsov OA, Hewaparkrama K, Seung M, Zakharov D, Stach EA, Sumanasekera GU (2009). Preferential growth of single-walled carbon nanotubes with metallic conductivity. Science, 326(5949): 116–120. CrossRef Harutyunyan AR, Chen G, Paronyan TM, Pigos EM, Kuznetsov OA, Hewaparkrama K, Seung M, Zakharov D, Stach EA, Sumanasekera GU (2009). Preferential growth of single-walled carbon nanotubes with metallic conductivity. Science, 326(5949): 116–120. CrossRef
67.
go back to reference Li Y, Mann, D, Rolandi M, Kim W, Ural A, Hung S, Javey A, Cao J, Wang D, Yenilmez E, Wang Q (2004). Preferential growth of semiconducting single-walled carbon nanotubes by a plasma enhanced CVD method. Nano Lett, 4(2): 317–321. CrossRef Li Y, Mann, D, Rolandi M, Kim W, Ural A, Hung S, Javey A, Cao J, Wang D, Yenilmez E, Wang Q (2004). Preferential growth of semiconducting single-walled carbon nanotubes by a plasma enhanced CVD method. Nano Lett, 4(2): 317–321. CrossRef
68.
go back to reference Yang F, Wang X, Zhang D, Yang J, Luo D, Xu ZW, Wei J, Wang JQ, Xu Z, Peng F, Li X, Li R, Li Y, Li M, Bai X, Ding F, Li Y (2014). Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature, 510(7506): 522–524. CrossRef Yang F, Wang X, Zhang D, Yang J, Luo D, Xu ZW, Wei J, Wang JQ, Xu Z, Peng F, Li X, Li R, Li Y, Li M, Bai X, Ding F, Li Y (2014). Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature, 510(7506): 522–524. CrossRef
69.
go back to reference Hong G, Zhang B, Peng B, Zhang J, Choi WM, Choi J Y, Kim JM, Liu Z (2009). Direct growth of semiconducting single-walled carbon nanotube array. J Am Chem Soc, 131(41): 14642–14643. CrossRef Hong G, Zhang B, Peng B, Zhang J, Choi WM, Choi J Y, Kim JM, Liu Z (2009). Direct growth of semiconducting single-walled carbon nanotube array. J Am Chem Soc, 131(41): 14642–14643. CrossRef
70.
go back to reference Ding L, Tselev A, Wang J, Yuan DN, Chu HB, McNicholas TP, Li Y, Liu J (2009). Selective growth of well-aligned semiconducting single-walled carbon nanotubes. Nano Lett, 9(2): 800–805. CrossRef Ding L, Tselev A, Wang J, Yuan DN, Chu HB, McNicholas TP, Li Y, Liu J (2009). Selective growth of well-aligned semiconducting single-walled carbon nanotubes. Nano Lett, 9(2): 800–805. CrossRef
71.
go back to reference Che Y, Wang C, Liu J, Liu B, Lin X, Parker J, Beasley C, Wong H, Zhou C (2012). Selective synthesis and device applications of semiconducting single-walled carbon nanotubes using isopropyl alcohol as feedstock. ACS Nano, 6: 7454–7462. CrossRef Che Y, Wang C, Liu J, Liu B, Lin X, Parker J, Beasley C, Wong H, Zhou C (2012). Selective synthesis and device applications of semiconducting single-walled carbon nanotubes using isopropyl alcohol as feedstock. ACS Nano, 6: 7454–7462. CrossRef
72.
go back to reference Li J, Liu K, Liang S, Zhou W, Pierce M, Wang F, Peng L, Liu J (2014). Growth of high-density-aligned and semiconducting enriched single-walled carbon nanotubes: decoupling the conflict between density and selectivity. ACS Nano, 8: 554–562. CrossRef Li J, Liu K, Liang S, Zhou W, Pierce M, Wang F, Peng L, Liu J (2014). Growth of high-density-aligned and semiconducting enriched single-walled carbon nanotubes: decoupling the conflict between density and selectivity. ACS Nano, 8: 554–562. CrossRef
73.
go back to reference Zhang S, Hu Y, Wu J, Liu D, Kang L, Zhao Q, Zhang J (2015). Selective scission of C–O and C–C bonds in ethanol using bimetal catalysts for the preferential growth of semiconducting SWNT arrays. J Am Chem Soc, 137: 1012–1015. CrossRef Zhang S, Hu Y, Wu J, Liu D, Kang L, Zhao Q, Zhang J (2015). Selective scission of C–O and C–C bonds in ethanol using bimetal catalysts for the preferential growth of semiconducting SWNT arrays. J Am Chem Soc, 137: 1012–1015. CrossRef
74.
go back to reference Zhang S, Tong L, Hu Y, Kang L, Zhang J (2015). Diameter-specific growth of semiconducting SWNT arrays using uniform Mo 2C solid catalyst. J Am Chem Soc, 137: 8904–8907. CrossRef Zhang S, Tong L, Hu Y, Kang L, Zhang J (2015). Diameter-specific growth of semiconducting SWNT arrays using uniform Mo 2C solid catalyst. J Am Chem Soc, 137: 8904–8907. CrossRef
75.
go back to reference Kang L, Deng S, Zhang S, Li Q, Zhang J (2016). Selective growth of subnanometer diameter single-walled carbon nanotube arrays in hydrogen-free CVD. J Am Chem Soc, 138: 12723–12726. CrossRef Kang L, Deng S, Zhang S, Li Q, Zhang J (2016). Selective growth of subnanometer diameter single-walled carbon nanotube arrays in hydrogen-free CVD. J Am Chem Soc, 138: 12723–12726. CrossRef
76.
go back to reference Zhang S, Kang L, Wang X, Tong L, Yang L, Wang Z, Qi K, Deng S, Li Q, Bai X, Ding F (2017). Arrays of horizontal carbon nanotubes of controlled chirality grown using designed catalysts. Nature, 543(7644): 234–238. CrossRef Zhang S, Kang L, Wang X, Tong L, Yang L, Wang Z, Qi K, Deng S, Li Q, Bai X, Ding F (2017). Arrays of horizontal carbon nanotubes of controlled chirality grown using designed catalysts. Nature, 543(7644): 234–238. CrossRef
77.
go back to reference Zhang S, Lin D, Liu W, Yu Y, Zhang J (2019). Growth of single-walled carbon nanotubes with different chirality on same solid cobalt catalysts at low temperature. Small, 15(46): 1903896. CrossRef Zhang S, Lin D, Liu W, Yu Y, Zhang J (2019). Growth of single-walled carbon nanotubes with different chirality on same solid cobalt catalysts at low temperature. Small, 15(46): 1903896. CrossRef
78.
go back to reference Zhang S, Wang X, Yao F, He M, Lin D, Ma H, Sun Y, Zhao Q, Liu K, Ding F, Zhang J (2019). Controllable growth of (n, n-1) family of semiconducting carbon nanotubes. Chem, 5: 1182–1193. CrossRef Zhang S, Wang X, Yao F, He M, Lin D, Ma H, Sun Y, Zhao Q, Liu K, Ding F, Zhang J (2019). Controllable growth of (n, n-1) family of semiconducting carbon nanotubes. Chem, 5: 1182–1193. CrossRef
79.
go back to reference Hata K, Futaba DN, Mizuno K, Namai T, Yumura M, Iijima S (2004). Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science, 306(5700): 1362–1364. CrossRef Hata K, Futaba DN, Mizuno K, Namai T, Yumura M, Iijima S (2004). Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science, 306(5700): 1362–1364. CrossRef
80.
go back to reference Futaba DN, Hata K, Yamada T, Hiraoka T, Hayamizu Y, Kakudate Y, Tanaike O, Hatori H, Yumura M, Iijima S (2006). Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat Mater, 5(12): 987–994. CrossRef Futaba DN, Hata K, Yamada T, Hiraoka T, Hayamizu Y, Kakudate Y, Tanaike O, Hatori H, Yumura M, Iijima S (2006). Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat Mater, 5(12): 987–994. CrossRef
81.
go back to reference Zhong G, Iwasaki T, Robertson J, Kawarada H (2007). Growth kinetics of 0.5 cm vertically aligned single-walled carbon nanotubes. J Phys Chem B, 111(8): 1907–1910. Zhong G, Iwasaki T, Robertson J, Kawarada H (2007). Growth kinetics of 0.5 cm vertically aligned single-walled carbon nanotubes. J Phys Chem B, 111(8): 1907–1910.
82.
go back to reference Xu YQ, Flor E, Kim MJ, Hamadani B, Schmidt H, Smalley RE, Hauge RH (2006). Vertical array growth of small diameter single-walled carbon nanotubes. J Am Chem Soc, 128(20), 6560–6561. CrossRef Xu YQ, Flor E, Kim MJ, Hamadani B, Schmidt H, Smalley RE, Hauge RH (2006). Vertical array growth of small diameter single-walled carbon nanotubes. J Am Chem Soc, 128(20), 6560–6561. CrossRef
83.
go back to reference Zhong G, Warner JH, Fouquet M, Robertson AW, Chen B, Robertson J (2012). Growth of ultrahigh density single-walled carbon nanotube forests by improved catalyst design. ACS Nano, 6(4), 2893–2903. CrossRef Zhong G, Warner JH, Fouquet M, Robertson AW, Chen B, Robertson J (2012). Growth of ultrahigh density single-walled carbon nanotube forests by improved catalyst design. ACS Nano, 6(4), 2893–2903. CrossRef
84.
go back to reference Xiang R, Einarsson E, Murakami Y, Shiomi J, Chiashi S, Tang Z, Maruyama S (2012). Diameter modulation of vertically aligned single-walled carbon nanotubes. ACS Nano, 6(8): 7472–7479. CrossRef Xiang R, Einarsson E, Murakami Y, Shiomi J, Chiashi S, Tang Z, Maruyama S (2012). Diameter modulation of vertically aligned single-walled carbon nanotubes. ACS Nano, 6(8): 7472–7479. CrossRef
85.
go back to reference Chen G, Sakurai S, Yumura M, Hata K, Futaba, DN (2016). Highly pure, millimeter-tall, sub-2-nanometer diameter single-walled carbon nanotube forests. Carbon, 107: 433–439. CrossRef Chen G, Sakurai S, Yumura M, Hata K, Futaba, DN (2016). Highly pure, millimeter-tall, sub-2-nanometer diameter single-walled carbon nanotube forests. Carbon, 107: 433–439. CrossRef
86.
go back to reference Han ZJ, Ostrikov K (2012). Uniform, dense arrays of vertically aligned, large-diameter single-walled carbon nanotubes. J Am Chem Soc, 134(13): 6018–6024. CrossRef Han ZJ, Ostrikov K (2012). Uniform, dense arrays of vertically aligned, large-diameter single-walled carbon nanotubes. J Am Chem Soc, 134(13): 6018–6024. CrossRef
87.
go back to reference Liu M, An H, Kumamoto A, Inoue T, Chiashi S, Xiang R, Maruyama S (2019). Efficient growth of vertically-aligned single-walled carbon nanotubes combining two unfavorable synthesis conditions. Carbon, 146: 413–419. CrossRef Liu M, An H, Kumamoto A, Inoue T, Chiashi S, Xiang R, Maruyama S (2019). Efficient growth of vertically-aligned single-walled carbon nanotubes combining two unfavorable synthesis conditions. Carbon, 146: 413–419. CrossRef
88.
go back to reference Qu L, Du F, Dai L (2008). Preferential syntheses of semiconducting vertically aligned single-walled carbon nanotubes for direct use in FETs. Nano Lett, 8(9): 2682–2687. CrossRef Qu L, Du F, Dai L (2008). Preferential syntheses of semiconducting vertically aligned single-walled carbon nanotubes for direct use in FETs. Nano Lett, 8(9): 2682–2687. CrossRef
89.
go back to reference Li X, Cai W, An J, Kim SY, Nah J, Yang DX, Piner R, Velamakanni A, Jung I, Tutuc E (2009). Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 324(5932): 1312–1314. CrossRef Li X, Cai W, An J, Kim SY, Nah J, Yang DX, Piner R, Velamakanni A, Jung I, Tutuc E (2009). Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 324(5932): 1312–1314. CrossRef
90.
go back to reference Huang M, Ruoff RS (2020). Growth of single-layer and multilayer graphene on Cu/Ni alloy substrates. Acc Chem Res, 53(4): 800–811. CrossRef Huang M, Ruoff RS (2020). Growth of single-layer and multilayer graphene on Cu/Ni alloy substrates. Acc Chem Res, 53(4): 800–811. CrossRef
91.
go back to reference Huang M, Biswal M, Park HJ, Jin S, Qu D, Hong S, Zhu Z, Qiu L, Luo D, Liu X, Yang Z, Liu Z, Huang Y, Lim H, Yoo WJ, Ding F, Wang Y, Lee Z, Ruoff RS(2018). Highly oriented monolayer graphene grown on a Cu/Ni(111) alloy foil. ACS Nano 12: 6117– 6127. CrossRef Huang M, Biswal M, Park HJ, Jin S, Qu D, Hong S, Zhu Z, Qiu L, Luo D, Liu X, Yang Z, Liu Z, Huang Y, Lim H, Yoo WJ, Ding F, Wang Y, Lee Z, Ruoff RS(2018). Highly oriented monolayer graphene grown on a Cu/Ni(111) alloy foil. ACS Nano 12: 6117– 6127. CrossRef
92.
go back to reference Zhang X, Wu T, Jiang Q, Wang H, Zhu H, Chen Z, Jiang R, Niu T, Li Z, Zhang Y, Qiu Z, Yu G, Li A, Qiao S, Wang H, Yu Q, Xie X (2019). Epitaxial growth of 6 in. single-crystalline graphene on a Cu/Ni (111) film at 750 °C via chemical vapor deposition. Small, 15: 1805395. Zhang X, Wu T, Jiang Q, Wang H, Zhu H, Chen Z, Jiang R, Niu T, Li Z, Zhang Y, Qiu Z, Yu G, Li A, Qiao S, Wang H, Yu Q, Xie X (2019). Epitaxial growth of 6 in. single-crystalline graphene on a Cu/Ni (111) film at 750 °C via chemical vapor deposition. Small, 15: 1805395.
93.
go back to reference Deng B., Xin Z, Xue R, Zhang S, Xu X, Gao J, Tang J, Qi Y, Wang Y, Zhao Y, Sun L, Wang H, Liu K, Rummeli MH, Weng LT, Luo Z, Tong L, Zhang, X, Xie C, Liu Z, Peng H (2019). Scalable and ultrafast epitaxial growth of single-crystal graphene wafers for electrically tunable liquid-crystal microlens arrays. Sci Bull, 64: 659–668. CrossRef Deng B., Xin Z, Xue R, Zhang S, Xu X, Gao J, Tang J, Qi Y, Wang Y, Zhao Y, Sun L, Wang H, Liu K, Rummeli MH, Weng LT, Luo Z, Tong L, Zhang, X, Xie C, Liu Z, Peng H (2019). Scalable and ultrafast epitaxial growth of single-crystal graphene wafers for electrically tunable liquid-crystal microlens arrays. Sci Bull, 64: 659–668. CrossRef
94.
go back to reference Wu T, Zhang X, Yuan Q, Xue J, Lu G, Liu Z, Wang H, Wang H, Ding F, Yu Q, Xie X, Jiang M (2016). Fast growth of inch-sized single-crystalline graphene from a controlled single nucleus on Cu-Ni alloys. Nat Mater, 15: 43–47. CrossRef Wu T, Zhang X, Yuan Q, Xue J, Lu G, Liu Z, Wang H, Wang H, Ding F, Yu Q, Xie X, Jiang M (2016). Fast growth of inch-sized single-crystalline graphene from a controlled single nucleus on Cu-Ni alloys. Nat Mater, 15: 43–47. CrossRef
95.
go back to reference Vlassiouk IV, Stehle Y, Pudasaini PR, Unocic RR, Rack PD, Baddorf AP, Ivanov IN, Lavrik NV, List F, Gupta N, Bets KV, Yakobson BI, Smirnov SN (2018). Evolutionary selection growth of two-dimensional materials on polycrystalline substrates. Nat Mater, 17: 318–322. CrossRef Vlassiouk IV, Stehle Y, Pudasaini PR, Unocic RR, Rack PD, Baddorf AP, Ivanov IN, Lavrik NV, List F, Gupta N, Bets KV, Yakobson BI, Smirnov SN (2018). Evolutionary selection growth of two-dimensional materials on polycrystalline substrates. Nat Mater, 17: 318–322. CrossRef
96.
go back to reference Chen Z, Qi Y, Chen X, Zhang Y, Liu Z (2019). Direct CVD growth of graphene on traditional glass: methods and mechanisms. Adv Mater, 31(9): 1803639. CrossRef Chen Z, Qi Y, Chen X, Zhang Y, Liu Z (2019). Direct CVD growth of graphene on traditional glass: methods and mechanisms. Adv Mater, 31(9): 1803639. CrossRef
97.
go back to reference Liu B, Sun J, Liu Z (2020). Direct Growth of graphene over Insulators by Gaseous-Promotor-assisted CVD: Progress and Prospects. ChemNanoMat, 6(4): 483–492. CrossRef Liu B, Sun J, Liu Z (2020). Direct Growth of graphene over Insulators by Gaseous-Promotor-assisted CVD: Progress and Prospects. ChemNanoMat, 6(4): 483–492. CrossRef
98.
go back to reference Wang G, Zhang M, Zhu Y, Ding G, Jiang D, Guo Q, Wang X (2013). Direct growth of graphene film on germanium substrate. Scientific Rep, 3(1): 1–6. Wang G, Zhang M, Zhu Y, Ding G, Jiang D, Guo Q, Wang X (2013). Direct growth of graphene film on germanium substrate. Scientific Rep, 3(1): 1–6.
99.
go back to reference Pasternak I, Wesolowski M, Jozwik I, Lukosius M, Lupina G, Dabrowski P, Baranowski JM, Strupinski W (2016). Graphene growth on Ge (100)/Si (100) substrates by CVD method. Scientific Rep, 6(1): 1–7. Pasternak I, Wesolowski M, Jozwik I, Lukosius M, Lupina G, Dabrowski P, Baranowski JM, Strupinski W (2016). Graphene growth on Ge (100)/Si (100) substrates by CVD method. Scientific Rep, 6(1): 1–7.
100.
go back to reference Dedkov Y, Voloshina E (2020). Epitaxial graphene/Ge interfaces: a minireview. Nanoscale, 12(21): 11416–11426. Dedkov Y, Voloshina E (2020). Epitaxial graphene/Ge interfaces: a minireview. Nanoscale, 12(21): 11416–11426.
101.
go back to reference Li P, Wei, W, Zhang M, Mei Y, Chu PK, Xie X, Yuan Q, Di Z (2020). Waer-scale growth of single-crystal graphene on vicinal Ge (001) substrate. Nano Today, 34: 100908. Li P, Wei, W, Zhang M, Mei Y, Chu PK, Xie X, Yuan Q, Di Z (2020). Waer-scale growth of single-crystal graphene on vicinal Ge (001) substrate. Nano Today, 34: 100908.
102.
go back to reference Ismach A, Druzgalski C, Penwell S, Schwartzberg A, Zheng M, Javey A, Bokor J, Zhang Y (2010). Direct chemical vapor deposition of graphene on dielectric surfaces. Nano Lett, 10: 1542–1548. CrossRef Ismach A, Druzgalski C, Penwell S, Schwartzberg A, Zheng M, Javey A, Bokor J, Zhang Y (2010). Direct chemical vapor deposition of graphene on dielectric surfaces. Nano Lett, 10: 1542–1548. CrossRef
103.
go back to reference Kim H, Song I, Park C, Son M, Hong M, Kim Y, Choi HC (2013). Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO 2 substrate. ACS Nano, 7(8): 6575–6582. CrossRef Kim H, Song I, Park C, Son M, Hong M, Kim Y, Choi HC (2013). Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO 2 substrate. ACS Nano, 7(8): 6575–6582. CrossRef
104.
go back to reference Sun J, Chen Z, Yuan L, Chen Y, Ning J, Liu S, Ma D, Song X, Priydarshi M, Bachmatiuk A, Rümmeli M, Ma T, Zhi L, Huang L, Zhang Y, Liu Z (2016). Direct chemical-vapor-deposition-fabricated, large-scale graphene glass with high carrier mobility and uniformity for touch panel applications. ACS Nano, 10(12): 11136–11144. CrossRef Sun J, Chen Z, Yuan L, Chen Y, Ning J, Liu S, Ma D, Song X, Priydarshi M, Bachmatiuk A, Rümmeli M, Ma T, Zhi L, Huang L, Zhang Y, Liu Z (2016). Direct chemical-vapor-deposition-fabricated, large-scale graphene glass with high carrier mobility and uniformity for touch panel applications. ACS Nano, 10(12): 11136–11144. CrossRef
105.
go back to reference Wei N, Li Q, Cong S, Ci H, Song Y, Yang Q, Lu C, Li C, Zou G, Sun J, Zhang Y, Liu Z (2019). Direct synthesis of flexible graphene glass with macroscopic uniformity enabled by copper-foam-assisted PECVD. J Mater Chem A, 7(9): 4813–4822. CrossRef Wei N, Li Q, Cong S, Ci H, Song Y, Yang Q, Lu C, Li C, Zou G, Sun J, Zhang Y, Liu Z (2019). Direct synthesis of flexible graphene glass with macroscopic uniformity enabled by copper-foam-assisted PECVD. J Mater Chem A, 7(9): 4813–4822. CrossRef
106.
go back to reference Chen J, Wen Y, Guo Y, Wu B, Huang L, Xue Y, Geng D, Wang D, Yu G, Liu Y (2011). Oxygen-aided synthesis of polycrystalline graphene on silicon dioxide substrates. J Am Chem Soc, 133: 17548–17551. CrossRef Chen J, Wen Y, Guo Y, Wu B, Huang L, Xue Y, Geng D, Wang D, Yu G, Liu Y (2011). Oxygen-aided synthesis of polycrystalline graphene on silicon dioxide substrates. J Am Chem Soc, 133: 17548–17551. CrossRef
107.
go back to reference Sun J, Gao T, Song X, Zhao Y, Lin Y, Wang H, Ma D, Chen Y, Xiang W, Wang J, Zhang Y, Liu Z (2014). Critical crystal growth of graphene on dielectric substrates at low temperature for electronic devices. J Am Chem Soc, 136: 6574–6577. CrossRef Sun J, Gao T, Song X, Zhao Y, Lin Y, Wang H, Ma D, Chen Y, Xiang W, Wang J, Zhang Y, Liu Z (2014). Critical crystal growth of graphene on dielectric substrates at low temperature for electronic devices. J Am Chem Soc, 136: 6574–6577. CrossRef
108.
go back to reference Wei D, Lu Y, Han C, Niu T, Chen W, Wee ATS (2013). Critical crystal growth of graphene on dielectric substrates at low temperature for electronic devices. Angew Chem Int Ed, 52: 14121–14126. Wei D, Lu Y, Han C, Niu T, Chen W, Wee ATS (2013). Critical crystal growth of graphene on dielectric substrates at low temperature for electronic devices. Angew Chem Int Ed, 52: 14121–14126.
109.
go back to reference Geng D, Wu B, Guo Y, Huang L, Xue Y, Chen J, Yu G, Jiang L, Hu W, Liu Y (2012). Uniform hexagonal graphene flakes and films grown on liquid copper surface. Proc Natl Acad Sci, 109(21): 7992–7996. CrossRef Geng D, Wu B, Guo Y, Huang L, Xue Y, Chen J, Yu G, Jiang L, Hu W, Liu Y (2012). Uniform hexagonal graphene flakes and films grown on liquid copper surface. Proc Natl Acad Sci, 109(21): 7992–7996. CrossRef
110.
go back to reference Wu YA, Fan Y, Speller S, Creeth GL, Sadowski JT, He K, Robertson AW, Allen CS, Warner JH (2012). Large single crystals of graphene on melted copper using chemical vapor deposition. ACS Nano, 6(6): 5010–5017. CrossRef Wu YA, Fan Y, Speller S, Creeth GL, Sadowski JT, He K, Robertson AW, Allen CS, Warner JH (2012). Large single crystals of graphene on melted copper using chemical vapor deposition. ACS Nano, 6(6): 5010–5017. CrossRef
111.
go back to reference Chen Y, Sun J, Gao J, Du F, Han Q, Nie Y, Chen Z, Bachmatiuk A, Priydarshi MK, Ma D, Song X, Wu X, Xiong C, Rümmeli MH, Ding F, Zhang Y, Liu Z (2015). Growing uniform graphene disks and films on molten glass for heating devices and cell culture. Adv Mater, 27: 7839–7846. CrossRef Chen Y, Sun J, Gao J, Du F, Han Q, Nie Y, Chen Z, Bachmatiuk A, Priydarshi MK, Ma D, Song X, Wu X, Xiong C, Rümmeli MH, Ding F, Zhang Y, Liu Z (2015). Growing uniform graphene disks and films on molten glass for heating devices and cell culture. Adv Mater, 27: 7839–7846. CrossRef
112.
go back to reference Sun J, Chen Y, Priydarshi MK, Chen Z, Bachmatiuk A, Zou Z, Chen Z, Song X, Gao Y, Rümmeli MH, Zhang Y, Liu Z (2015). Direct chemical vapor deposition-derived graphene glasses targeting wide ranged applications. Nano Lett, 15: 5846–5854. CrossRef Sun J, Chen Y, Priydarshi MK, Chen Z, Bachmatiuk A, Zou Z, Chen Z, Song X, Gao Y, Rümmeli MH, Zhang Y, Liu Z (2015). Direct chemical vapor deposition-derived graphene glasses targeting wide ranged applications. Nano Lett, 15: 5846–5854. CrossRef
113.
go back to reference Chen Z, Ci H, Tan Z, Dou Z, Chen X, Li B, Liu R, Lin L, Cui L, Gao P, Peng H, Zhang Y, Liu Z (2019). Growth of 12-inch uniform monolayer graphene film on molten glass and its application in PbI2-based photodetector. Nano Res, 12: 1888–1893. CrossRef Chen Z, Ci H, Tan Z, Dou Z, Chen X, Li B, Liu R, Lin L, Cui L, Gao P, Peng H, Zhang Y, Liu Z (2019). Growth of 12-inch uniform monolayer graphene film on molten glass and its application in PbI2-based photodetector. Nano Res, 12: 1888–1893. CrossRef
Metadata
Title
Controlled Growths of Carbon Nanotubes and Graphene
Author
Yanjie Su
Copyright Year
2022
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-16-5497-8_3