Skip to main content
Top
Published in: Journal of Materials Science 18/2014

01-09-2014

Controlling foam morphology of polystyrene via surface chemistry, size and concentration of nanosilica particles

Authors: Seyed Esmaeil Zakiyan, Mohamad Hossein Navid Famili, Mohammad Ako

Published in: Journal of Materials Science | Issue 18/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Controlling cell morphologies of polymeric foams is an important part of controlling foam properties. In this study, the effects of particle size, particle content, and particle surface chemistry on cell nucleation in nanosilica/polystyrene (PS) composites are investigated. A theoretical hypothesis on the effect of nanoparticle size on cell nucleation in PS matrix foam was examined. The surface chemistry of nanosilica particles was studied by modifying them with Vinyltriethoxysilane (VTES) silane coupling agent. The microcellular porous materials of neat and composite PS were prepared by batch foaming technique (pressure quench) using supercritical carbon dioxide (ScCO2) as a blowing agent. It was found that the size of the pores decreases and the cell density increases with the decrease in nanosilica size and the increase of silica loading. It was also observed that the surface treatment of the nanosilica particles have substantial effect on the decrease of the cell size and the increase of the cell density.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Chen G, Ushida T, Tateishi T (2001) Development of biodegradable porous scaffolds for tissue engineering. Mater Sci Eng 17:63–69CrossRef Chen G, Ushida T, Tateishi T (2001) Development of biodegradable porous scaffolds for tissue engineering. Mater Sci Eng 17:63–69CrossRef
4.
go back to reference Famili MHN, Janani H, Enayati MS (2011) Foaming of a polymer–nanoparticle system: effect of the particle properties. J Appl Polym Sci 119:2847–2856CrossRef Famili MHN, Janani H, Enayati MS (2011) Foaming of a polymer–nanoparticle system: effect of the particle properties. J Appl Polym Sci 119:2847–2856CrossRef
5.
go back to reference Janani H, Famili MHN (2010) Investigation of a strategy for well controlled inducement of microcellular and nano cellular morphologies in polymers. J Polym Eng Sci 50:1558–1570CrossRef Janani H, Famili MHN (2010) Investigation of a strategy for well controlled inducement of microcellular and nano cellular morphologies in polymers. J Polym Eng Sci 50:1558–1570CrossRef
6.
go back to reference Ishikawa T, Ohshima M (2011) Visual observation and numerical studies of polymer foaming behavior of polypropylene/carbon dioxide system in a core-back injection molding process. J Polym Eng Sci 51:1617–1625CrossRef Ishikawa T, Ohshima M (2011) Visual observation and numerical studies of polymer foaming behavior of polypropylene/carbon dioxide system in a core-back injection molding process. J Polym Eng Sci 51:1617–1625CrossRef
7.
go back to reference Chen L, Rende D, Schadler LS, Ozisik R (2013) Polymer nanocomposite foams. J Mater Chem A 1:3837–3850CrossRef Chen L, Rende D, Schadler LS, Ozisik R (2013) Polymer nanocomposite foams. J Mater Chem A 1:3837–3850CrossRef
9.
go back to reference Alavi Nikje MM, Garmarudi AB, Haghshenas M (2006) Effect of talc filler on physical properties of polyurethane rigid foams. J Polym Plast Technol Eng 45:1213–1217CrossRef Alavi Nikje MM, Garmarudi AB, Haghshenas M (2006) Effect of talc filler on physical properties of polyurethane rigid foams. J Polym Plast Technol Eng 45:1213–1217CrossRef
10.
go back to reference Naguib HE, Park CB, Lee PC (2003) Effect of talc content on the volume expansion ratio of extruded PP foams. J Cell Plast 39:499–511CrossRef Naguib HE, Park CB, Lee PC (2003) Effect of talc content on the volume expansion ratio of extruded PP foams. J Cell Plast 39:499–511CrossRef
11.
go back to reference Colton JS, Suh N (1987) The nucleation of microcellular thermoplastic foam with additives: part I: theoretical considerations. J Polym Eng Sci 27:485–492CrossRef Colton JS, Suh N (1987) The nucleation of microcellular thermoplastic foam with additives: part I: theoretical considerations. J Polym Eng Sci 27:485–492CrossRef
12.
go back to reference Park CP (1982) Expandable polyolefin compositions and polyolefin foam preparation process. US Patent 4,347,329 Park CP (1982) Expandable polyolefin compositions and polyolefin foam preparation process. US Patent 4,347,329
13.
go back to reference Huang H-X, Wang J-K (2007) Improving polypropylene microcellular foaming through blending and the addition of nano-calcium carbonate. J Appl Polym Sci 106:505–513CrossRef Huang H-X, Wang J-K (2007) Improving polypropylene microcellular foaming through blending and the addition of nano-calcium carbonate. J Appl Polym Sci 106:505–513CrossRef
14.
go back to reference Glenn GM, Orts WJ, Nobes GAR (2001) Starch, fiber and CaCO3 effects on the physical properties of foams made by a baking process. Ind Crop Prod 14:201–212CrossRef Glenn GM, Orts WJ, Nobes GAR (2001) Starch, fiber and CaCO3 effects on the physical properties of foams made by a baking process. Ind Crop Prod 14:201–212CrossRef
15.
go back to reference Hahn K, Weber H, Guenther W, Schillinger B, Weber R (1984) Production of fine-celled foams from styrene polymers. US Patent 4,446,253 Hahn K, Weber H, Guenther W, Schillinger B, Weber R (1984) Production of fine-celled foams from styrene polymers. US Patent 4,446,253
16.
go back to reference Juntunen RP, Kumar V, Weller JE, Bezubic WP (2000) Impact strength of high density microcellular poly (vinyl chloride) foams. J Vinyl Addit Technol 6:93–99CrossRef Juntunen RP, Kumar V, Weller JE, Bezubic WP (2000) Impact strength of high density microcellular poly (vinyl chloride) foams. J Vinyl Addit Technol 6:93–99CrossRef
17.
go back to reference Lee S-T (1993) Shear effects on thermoplastic foam nucleation. J Polym Eng Sci 33:418–422CrossRef Lee S-T (1993) Shear effects on thermoplastic foam nucleation. J Polym Eng Sci 33:418–422CrossRef
18.
go back to reference Lee CH, Lee K-J, Jeongand HG, Kim SW (2000) Growth of gas bubbles in the foam extrusion process. Adv Polym Technol 19:97–112CrossRef Lee CH, Lee K-J, Jeongand HG, Kim SW (2000) Growth of gas bubbles in the foam extrusion process. Adv Polym Technol 19:97–112CrossRef
19.
go back to reference Johnson DE, Krutchen CM, Sharps Jr GV (1982) Polymer foam extrusion system. US Patent 4,344,710 Johnson DE, Krutchen CM, Sharps Jr GV (1982) Polymer foam extrusion system. US Patent 4,344,710
20.
go back to reference Ramesh NS, Rasmussen DH, Campbell GA (1994) The heterogeneous nucleation of microcellular foams assisted by the survival of micro voids in polymers containing low glass transition particles. Part I: mathematical modeling and numerical simulation. J Polym Eng Sci 34:1685–1697CrossRef Ramesh NS, Rasmussen DH, Campbell GA (1994) The heterogeneous nucleation of microcellular foams assisted by the survival of micro voids in polymers containing low glass transition particles. Part I: mathematical modeling and numerical simulation. J Polym Eng Sci 34:1685–1697CrossRef
21.
go back to reference Wang C, Cox K, Campbell GA (1996) Microcellular foaming of polypropylene containing low glass transition rubber particles in an injection molding process. J Vinyl Addit Technol 2:167–169CrossRef Wang C, Cox K, Campbell GA (1996) Microcellular foaming of polypropylene containing low glass transition rubber particles in an injection molding process. J Vinyl Addit Technol 2:167–169CrossRef
22.
go back to reference Shen J, Zeng C, Lee LJ (2005) Synthesis of polystyrene–carbon nanofibers nanocomposite foams. J Polym 46:5218–5224CrossRef Shen J, Zeng C, Lee LJ (2005) Synthesis of polystyrene–carbon nanofibers nanocomposite foams. J Polym 46:5218–5224CrossRef
23.
go back to reference Zhai W, Park CB, Kontopoulou M (2011) Nanosilica addition dramatically improves the cell morphology and expansion ratio of polypropylene hetero phasic copolymer foams blown in continuous extrusion. J Ind Eng Chem Res 50:7282–7289CrossRef Zhai W, Park CB, Kontopoulou M (2011) Nanosilica addition dramatically improves the cell morphology and expansion ratio of polypropylene hetero phasic copolymer foams blown in continuous extrusion. J Ind Eng Chem Res 50:7282–7289CrossRef
24.
go back to reference Chang Y-W, Lee D, Bae S-Y (2006) Preparation of polyethylene-octene elastomer/clay nanocomposite and microcellular foam processed in supercritical carbon dioxide. J Polym Int 55:184–189CrossRef Chang Y-W, Lee D, Bae S-Y (2006) Preparation of polyethylene-octene elastomer/clay nanocomposite and microcellular foam processed in supercritical carbon dioxide. J Polym Int 55:184–189CrossRef
25.
go back to reference Zheng W, Lee YH, Park CB (2006) The effects of exfoliated nano-clay on the extrusion microcellular foaming of amorphous and crystalline nylon. J Cell Plast 42:271–288CrossRef Zheng W, Lee YH, Park CB (2006) The effects of exfoliated nano-clay on the extrusion microcellular foaming of amorphous and crystalline nylon. J Cell Plast 42:271–288CrossRef
26.
go back to reference Jiang X-L, Bao J-B, Liu T, Zhao L, Xu Z-M, Yuan W-K (2009) Microcellular foaming of polypropylene/clay nanocomposites with supercritical carbon dioxide. J Cell Plast 45:515–538CrossRef Jiang X-L, Bao J-B, Liu T, Zhao L, Xu Z-M, Yuan W-K (2009) Microcellular foaming of polypropylene/clay nanocomposites with supercritical carbon dioxide. J Cell Plast 45:515–538CrossRef
27.
go back to reference Tsimpliaraki A, Tsivintzelis I, Marras SI, Zuburtikudis I, Panayiotou C (2011) The effect of surface chemistry and nanoclay loading on the microcellular structure of porous poly(d, l lactic acid) nanocomposites. J Supercrit Fluids 57:278–287CrossRef Tsimpliaraki A, Tsivintzelis I, Marras SI, Zuburtikudis I, Panayiotou C (2011) The effect of surface chemistry and nanoclay loading on the microcellular structure of porous poly(d, l lactic acid) nanocomposites. J Supercrit Fluids 57:278–287CrossRef
28.
go back to reference Zhai W, Yu J, Wu L, Ma W, He J (2006) Heterogeneous nucleation uniformizing cell size distribution in microcellular nanocomposites foams. J Polym 47:7580–7589CrossRef Zhai W, Yu J, Wu L, Ma W, He J (2006) Heterogeneous nucleation uniformizing cell size distribution in microcellular nanocomposites foams. J Polym 47:7580–7589CrossRef
29.
go back to reference Su H-L, Hsu J-M, Pan J-P, Chern C-S (2007) Silica nanoparticles modified with vinyltriethoxysilane and their copolymerization with N,N′-bismaleimide-4,4′-diphenylmethane. J Appl Polym Sci 103:3600–3608CrossRef Su H-L, Hsu J-M, Pan J-P, Chern C-S (2007) Silica nanoparticles modified with vinyltriethoxysilane and their copolymerization with N,N′-bismaleimide-4,4′-diphenylmethane. J Appl Polym Sci 103:3600–3608CrossRef
30.
go back to reference Shen J, Han X, Lee LJ (2006) Nano scaled reinforcement of polystyrene foams using carbon nanofibers. J Cell Plast 42:105–126CrossRef Shen J, Han X, Lee LJ (2006) Nano scaled reinforcement of polystyrene foams using carbon nanofibers. J Cell Plast 42:105–126CrossRef
31.
go back to reference Chen L, Ozisik R, Schadler LS (2010) The influence of carbon nanotube aspect ratio on the foam morphology of MWNT/PMMA nanocomposite foams. J Polym 51:2368–2375CrossRef Chen L, Ozisik R, Schadler LS (2010) The influence of carbon nanotube aspect ratio on the foam morphology of MWNT/PMMA nanocomposite foams. J Polym 51:2368–2375CrossRef
32.
go back to reference Ibeh CC, Bubacz M (2008) Current trends in nanocomposite foams. J Cell Plast 44:493–515CrossRef Ibeh CC, Bubacz M (2008) Current trends in nanocomposite foams. J Cell Plast 44:493–515CrossRef
33.
go back to reference Zeng C, Han X, Lee LJ, Koelling KW, Tomasko DL (2003) Polymer–clay nanocomposite foams prepared using carbon dioxide. J Adv Mater 15:1743–1747CrossRef Zeng C, Han X, Lee LJ, Koelling KW, Tomasko DL (2003) Polymer–clay nanocomposite foams prepared using carbon dioxide. J Adv Mater 15:1743–1747CrossRef
34.
go back to reference Lee LJ, Zeng C, Cao X, Han X, Shen J, Xu G (2005) Polymer nanocomposite foams. Compos Sci Technol 65:2344–2363CrossRef Lee LJ, Zeng C, Cao X, Han X, Shen J, Xu G (2005) Polymer nanocomposite foams. Compos Sci Technol 65:2344–2363CrossRef
35.
go back to reference Goren K, Chen L, Schadler LS, Ozisik R (2010) Influence of nanoparticle surface chemistry and size on supercritical carbon dioxide processed nanocomposite foam morphology. J Supercrit Fluids 51:420–427CrossRef Goren K, Chen L, Schadler LS, Ozisik R (2010) Influence of nanoparticle surface chemistry and size on supercritical carbon dioxide processed nanocomposite foam morphology. J Supercrit Fluids 51:420–427CrossRef
36.
go back to reference Yang F, Nelson GL (2004) PMMA/silica nanocomposite studies: synthesis and properties. J Appl Polym Sci 91:3844–3850CrossRef Yang F, Nelson GL (2004) PMMA/silica nanocomposite studies: synthesis and properties. J Appl Polym Sci 91:3844–3850CrossRef
37.
go back to reference Zukienė K, Jankauskaitė V (2005) The effect of surface properties on the adhesion of modified polychloroprene used as adhesive. J Adhes Sci Technol 19:627–638CrossRef Zukienė K, Jankauskaitė V (2005) The effect of surface properties on the adhesion of modified polychloroprene used as adhesive. J Adhes Sci Technol 19:627–638CrossRef
38.
go back to reference Fowkes FM (1964) Attractive forces at interfaces. J Ind Eng Chem Res 56:40–52CrossRef Fowkes FM (1964) Attractive forces at interfaces. J Ind Eng Chem Res 56:40–52CrossRef
39.
go back to reference Yi S, Su Y, Wan Y (2010) Preparation and characterization of vinyltriethoxysilane (VTES) modified silicalite-1/PDMS hybrid pervaporation membrane and its application in ethanol separation from dilute aqueous solution. J Membr Sci 360:341–351CrossRef Yi S, Su Y, Wan Y (2010) Preparation and characterization of vinyltriethoxysilane (VTES) modified silicalite-1/PDMS hybrid pervaporation membrane and its application in ethanol separation from dilute aqueous solution. J Membr Sci 360:341–351CrossRef
40.
go back to reference Rong MZ, Zhang MQ, Ruan WH (2006) Surface modification of nano scale fillers for improving properties of polymer nanocomposites: a review. J Mater Sci Technol 22:787–796CrossRef Rong MZ, Zhang MQ, Ruan WH (2006) Surface modification of nano scale fillers for improving properties of polymer nanocomposites: a review. J Mater Sci Technol 22:787–796CrossRef
41.
go back to reference Sun Y, Zhang Z, Wong CP (2005) Study on mono-dispersed nano-size silica by surface modification for under fill applications. J Colloid Interface Sci 292:436–444CrossRef Sun Y, Zhang Z, Wong CP (2005) Study on mono-dispersed nano-size silica by surface modification for under fill applications. J Colloid Interface Sci 292:436–444CrossRef
42.
go back to reference Goel SK, Beckman EJ (1994) Generation of microcellular polymeric foams using supercritical carbon dioxide. I: effect of pressure and temperature on nucleation. J Polym Eng Sci 34:1137–1147CrossRef Goel SK, Beckman EJ (1994) Generation of microcellular polymeric foams using supercritical carbon dioxide. I: effect of pressure and temperature on nucleation. J Polym Eng Sci 34:1137–1147CrossRef
43.
go back to reference Fletcher N (1958) Size effect in heterogeneous nucleation. J Chem Phys 29:572–576CrossRef Fletcher N (1958) Size effect in heterogeneous nucleation. J Chem Phys 29:572–576CrossRef
44.
go back to reference Ilsoon L (2000) Adhesion at polymer–solid interfaces: sticker and receptor group effects. PhD thesis, University of Delaware Ilsoon L (2000) Adhesion at polymer–solid interfaces: sticker and receptor group effects. PhD thesis, University of Delaware
45.
go back to reference Mortezaei M, Famili MHN, Kokabi M (2011) The role of interfacial interactions on the glass-transition and viscoelastic properties of silica/polystyrene nanocomposite. J Compos Sci Technol 71:1039–1045CrossRef Mortezaei M, Famili MHN, Kokabi M (2011) The role of interfacial interactions on the glass-transition and viscoelastic properties of silica/polystyrene nanocomposite. J Compos Sci Technol 71:1039–1045CrossRef
Metadata
Title
Controlling foam morphology of polystyrene via surface chemistry, size and concentration of nanosilica particles
Authors
Seyed Esmaeil Zakiyan
Mohamad Hossein Navid Famili
Mohammad Ako
Publication date
01-09-2014
Publisher
Springer US
Published in
Journal of Materials Science / Issue 18/2014
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-014-8347-4

Other articles of this Issue 18/2014

Journal of Materials Science 18/2014 Go to the issue

Premium Partners