Skip to main content
Top
Published in: Experiments in Fluids 1/2014

01-01-2014 | Research Article

Convection driven by a horizontal temperature gradient in a confined aqueous surfactant solution: the effect of noncondensables

Authors: Yaofa Li, Minami Yoda

Published in: Experiments in Fluids | Issue 1/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Buoyancy–thermocapillary convection in liquid layers undergoing phase change driven by a horizontal temperature gradient in a sealed cavity in the near-absence of noncondensables is a flow relevant to evaporative cooling. Yet most of the experimental studies have instead considered convection under air at ambient pressures. Convection driven by buoyancy and Marangoni effects in a ~0.3-cm-deep layer of an aqueous surfactant solution in a closed rectangular test cell was therefore studied using particle image velocimetry. Convection under air at ambient conditions was compared with that under conditions where the gas phase was dominated by water vapor. The initial results suggest that noncondensables have a significant effect on the liquid-phase flow.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Birikh RV (1966) Thermocapillary convection in a horizontal layer of liquid. J Appl Mech Tech Phys 7:43–44CrossRef Birikh RV (1966) Thermocapillary convection in a horizontal layer of liquid. J Appl Mech Tech Phys 7:43–44CrossRef
go back to reference Burguete J, Mukolobwiez N, Daviaud F, Garnier N, Chiffaudel A (2001) Buoyant–thermocapillary convection instabilities in extended liquid layers subject to a horizontal temperature gradient. Phys Fluids 13:2773–2787CrossRef Burguete J, Mukolobwiez N, Daviaud F, Garnier N, Chiffaudel A (2001) Buoyant–thermocapillary convection instabilities in extended liquid layers subject to a horizontal temperature gradient. Phys Fluids 13:2773–2787CrossRef
go back to reference Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 8:679–698CrossRef Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 8:679–698CrossRef
go back to reference Chan CL, Chen CF (2010) Effect of gravity on the stability of thermocapillary convection in a horizontal fluid layer. J Fluid Mech 647:91–103CrossRefMATH Chan CL, Chen CF (2010) Effect of gravity on the stability of thermocapillary convection in a horizontal fluid layer. J Fluid Mech 647:91–103CrossRefMATH
go back to reference Gillon P, Homsy GM (1996) Combined buoyancy–thermocapillary convection in a cavity: an experimental study. Phys Fluids 8:2953–2963CrossRef Gillon P, Homsy GM (1996) Combined buoyancy–thermocapillary convection in a cavity: an experimental study. Phys Fluids 8:2953–2963CrossRef
go back to reference Jeon YJ, Sung HJ (2011) PIV measurement of flow around an arbitrarily moving body. Exp Fluids 50:787–798CrossRef Jeon YJ, Sung HJ (2011) PIV measurement of flow around an arbitrarily moving body. Exp Fluids 50:787–798CrossRef
go back to reference Ji Y, Liu Q-S, Liu R (2008) Coupling of evaporation and thermocapillary convection in a liquid layer with mass and heat exchanging interface. Chin Phys Lett 25:608–611CrossRef Ji Y, Liu Q-S, Liu R (2008) Coupling of evaporation and thermocapillary convection in a liquid layer with mass and heat exchanging interface. Chin Phys Lett 25:608–611CrossRef
go back to reference Keane RD, Adrian RJ (1990) Optimization of particle image velocimeters. Part I: double pulsed systems. Meas Sci Technol 1:1202–1215CrossRef Keane RD, Adrian RJ (1990) Optimization of particle image velocimeters. Part I: double pulsed systems. Meas Sci Technol 1:1202–1215CrossRef
go back to reference Keller JR, Bergman TL (1990) Thermosolutal inducement of no-slip free surfaces in combined Marangoni–buoyancy driven cavity flows. Trans ASME J Heat Trans 112:363–369CrossRef Keller JR, Bergman TL (1990) Thermosolutal inducement of no-slip free surfaces in combined Marangoni–buoyancy driven cavity flows. Trans ASME J Heat Trans 112:363–369CrossRef
go back to reference Kobayashi Y, Okumura A, Matsue T (1991) Effect of gravity and noncondensable gas levels on condensation in variable conductance heat pipe. J Thermophys 5:61–68CrossRef Kobayashi Y, Okumura A, Matsue T (1991) Effect of gravity and noncondensable gas levels on condensation in variable conductance heat pipe. J Thermophys 5:61–68CrossRef
go back to reference Mahajan R, Chiu C-P, Chrysler G (2006) Cooling a microprocessor chip. Proc IEEE 94:1476–1486CrossRef Mahajan R, Chiu C-P, Chrysler G (2006) Cooling a microprocessor chip. Proc IEEE 94:1476–1486CrossRef
go back to reference Makievski AV, Fainerman VB, Joos P (1994) Dynamic surface tension of micellar Triton X-100 solutions by the maximum-bubble-pressure method. J Colloid Interf Sci 166:6–13CrossRef Makievski AV, Fainerman VB, Joos P (1994) Dynamic surface tension of micellar Triton X-100 solutions by the maximum-bubble-pressure method. J Colloid Interf Sci 166:6–13CrossRef
go back to reference Manglik RM, Wasekar VM, Zhang J (2001) Dynamic and equilibrium surface tension of aqueous surfactant and polymeric solutions. Exp Therm Fluid Sci 25:55–64CrossRef Manglik RM, Wasekar VM, Zhang J (2001) Dynamic and equilibrium surface tension of aqueous surfactant and polymeric solutions. Exp Therm Fluid Sci 25:55–64CrossRef
go back to reference Markos M, Ajaev V, Homsy GM (2006) Steady flow and evaporation of a volatile liquid in a wedge. Phys Fluids 18:092102/1-12CrossRef Markos M, Ajaev V, Homsy GM (2006) Steady flow and evaporation of a volatile liquid in a wedge. Phys Fluids 18:092102/1-12CrossRef
go back to reference Meinhart CD, Wereley ST, Santiago JG (2000) A PIV algorithm for estimating time-averaged velocity fields. J Fluids Eng 122:285–289CrossRef Meinhart CD, Wereley ST, Santiago JG (2000) A PIV algorithm for estimating time-averaged velocity fields. J Fluids Eng 122:285–289CrossRef
go back to reference Parmentier PM, Regnier VC, Lebon G (1993) Buoyant–thermocapillary instabilities in medium-Prandtl-number fluid layer subject to a horizontal temperature gradient. Int J Heat Mass Transf 36:2417–2427CrossRefMATH Parmentier PM, Regnier VC, Lebon G (1993) Buoyant–thermocapillary instabilities in medium-Prandtl-number fluid layer subject to a horizontal temperature gradient. Int J Heat Mass Transf 36:2417–2427CrossRefMATH
go back to reference Peterson GP (1994) An Introduction to heat pipes: modeling, testing, and applications. John Wiley and Sons, New York Peterson GP (1994) An Introduction to heat pipes: modeling, testing, and applications. John Wiley and Sons, New York
go back to reference Phongikaroon S, Hoffmaster R, Judd KP, Smith GB, Handler RA (2005) Effect of temperature on the surface tension of soluble and insoluble surfactants of hydrodynamical importance. J Chem Eng Data 50:1602–1607CrossRef Phongikaroon S, Hoffmaster R, Judd KP, Smith GB, Handler RA (2005) Effect of temperature on the surface tension of soluble and insoluble surfactants of hydrodynamical importance. J Chem Eng Data 50:1602–1607CrossRef
go back to reference Priede J, Gerbeth G (1997) Convective, absolute, and global instabilities of thermocapillary–buoyancy convection in extended layers. Phys Rev E 56:4187–4199CrossRef Priede J, Gerbeth G (1997) Convective, absolute, and global instabilities of thermocapillary–buoyancy convection in extended layers. Phys Rev E 56:4187–4199CrossRef
go back to reference Qin T, Grigoriev R (2012) Convection, evaporation and condensation of simple and binary fluids in confined geometries. In: Proceedings of the 3rd micro/nanoscale heat and mass transfer international conference, ASME paper no. MNHMT2012-75266 Qin T, Grigoriev R (2012) Convection, evaporation and condensation of simple and binary fluids in confined geometries. In: Proceedings of the 3rd micro/nanoscale heat and mass transfer international conference, ASME paper no. MNHMT2012-75266
go back to reference Riley RJ, Neitzel GP (1998) Instability of thermocapillary–buoyancy convection in shallow layers. Part 1. Characterization of steady and oscillatory instabilities. J Fluid Mech 359:143–164CrossRefMATHMathSciNet Riley RJ, Neitzel GP (1998) Instability of thermocapillary–buoyancy convection in shallow layers. Part 1. Characterization of steady and oscillatory instabilities. J Fluid Mech 359:143–164CrossRefMATHMathSciNet
go back to reference Savino R, di Francescantonio N, Fortezza R, Abe Y (2007) Heat pipes with binary mixtures and inverse Marangoni effects for microgravity applications. Acta Astron 61:16–26CrossRef Savino R, di Francescantonio N, Fortezza R, Abe Y (2007) Heat pipes with binary mixtures and inverse Marangoni effects for microgravity applications. Acta Astron 61:16–26CrossRef
go back to reference Schatz MF, Neitzel GP (2001) Experiments on thermocapillary instabilities. Annu Rev Fluid Mech 33:93–127CrossRef Schatz MF, Neitzel GP (2001) Experiments on thermocapillary instabilities. Annu Rev Fluid Mech 33:93–127CrossRef
go back to reference Shevtsova VM, Nepomnyashchy AA, Legros J (2003) Thermocapillary–buoyancy convection in a shallow cavity heated from the side. Phys Rev E 67:066308/1-14CrossRef Shevtsova VM, Nepomnyashchy AA, Legros J (2003) Thermocapillary–buoyancy convection in a shallow cavity heated from the side. Phys Rev E 67:066308/1-14CrossRef
go back to reference Sobhan CB, Rag FL, Peterson GP (2007) A review and comparative study of the investigations on micro heat pipes. Int J Energy Res 31:664–688CrossRef Sobhan CB, Rag FL, Peterson GP (2007) A review and comparative study of the investigations on micro heat pipes. Int J Energy Res 31:664–688CrossRef
go back to reference Song X, Nobes DF (2011) Experimental investigation of evaporation-induced convection in water using laser based measurement techniques. Exp Therm Fluid Sci 35:910–919CrossRef Song X, Nobes DF (2011) Experimental investigation of evaporation-induced convection in water using laser based measurement techniques. Exp Therm Fluid Sci 35:910–919CrossRef
go back to reference Tang GH, Zu HW, Zhuang ZN, Tao WQ (2012) Film condensation heat transfer on a horizontal tube in presence of a noncondensable gas. Appl Therm Eng 36:414–425CrossRef Tang GH, Zu HW, Zhuang ZN, Tao WQ (2012) Film condensation heat transfer on a horizontal tube in presence of a noncondensable gas. Appl Therm Eng 36:414–425CrossRef
go back to reference Villers D, Platten JK (1987) Separation of Marangoni convection from gravitational convection in earth experiments. Physicochem Hydrodyn 8:173–183 Villers D, Platten JK (1987) Separation of Marangoni convection from gravitational convection in earth experiments. Physicochem Hydrodyn 8:173–183
go back to reference Villers D, Platten JK (1992) Coupled buoyancy and Marangoni convection in acetone: experiments and comparison with numerical simulations. J Fluid Mech 234:487–510CrossRef Villers D, Platten JK (1992) Coupled buoyancy and Marangoni convection in acetone: experiments and comparison with numerical simulations. J Fluid Mech 234:487–510CrossRef
go back to reference Ward CA, Duan F (2004) Turbulent transition of thermocapillary flow induced by water evaporation. Phys Rev E 69:056308/1-10CrossRef Ward CA, Duan F (2004) Turbulent transition of thermocapillary flow induced by water evaporation. Phys Rev E 69:056308/1-10CrossRef
go back to reference Westerweel J, Dabiri D (1997) The effect of a discrete window offset on the accuracy of cross-correlation analysis of digital PIV recordings. Exp Fluids 23:20–28CrossRef Westerweel J, Dabiri D (1997) The effect of a discrete window offset on the accuracy of cross-correlation analysis of digital PIV recordings. Exp Fluids 23:20–28CrossRef
go back to reference Westerweel J, Scarano F (2005) Universal outlier detection for PIV data. Exp Fluids 39:1096–1100CrossRef Westerweel J, Scarano F (2005) Universal outlier detection for PIV data. Exp Fluids 39:1096–1100CrossRef
go back to reference Wozniak G, Wozniak K (1994) Buoyancy and thermocapillary flow analysis by the combined use of liquid crystals and PIV. Exp Fluids 17:141–146CrossRef Wozniak G, Wozniak K (1994) Buoyancy and thermocapillary flow analysis by the combined use of liquid crystals and PIV. Exp Fluids 17:141–146CrossRef
Metadata
Title
Convection driven by a horizontal temperature gradient in a confined aqueous surfactant solution: the effect of noncondensables
Authors
Yaofa Li
Minami Yoda
Publication date
01-01-2014
Publisher
Springer Berlin Heidelberg
Published in
Experiments in Fluids / Issue 1/2014
Print ISSN: 0723-4864
Electronic ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-013-1663-7

Other articles of this Issue 1/2014

Experiments in Fluids 1/2014 Go to the issue

Premium Partners