Skip to main content
Top

2020 | OriginalPaper | Chapter

Convection of Viscoplastic Fluid in U-Tube Bends

Authors : N. H. Khan, M. K. Paswan, M. A. Hassan

Published in: Recent Advances in Mechanical Engineering

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Viscoplastic fluids are found among both man-made and natural materials frequently. They are characterized by the presence of yield stress, which results in complex fluid rheology. During heat treatment, such materials undergo convection. The convection patterns are expected to be complex due to the presence of yield stress and delayed fluid movement. In this work, heat transfer and flow characteristics of viscoplastic fluid in a square duct with 180° sharp bend have been studied numerically. The duct is filled with viscoplastic fluid obeying Herschel–Bulkley model. The flow is assumed to be two dimensional, laminar and steady. Finite volume-based scheme is used to obtain the flow domain behavior. The effects of Reynolds number, input height to output height ratio (IOR), Yield number and power law index on the flow and heat transfer characteristics of the viscoplastic fluid have been investigated. Results are presented in terms of streamlines, isotherms and velocities under different heating conditions. Yielded and unyielded regions in the flow domain have been identified. It has been found that vortices are emanating near the sharp corner. A strong correlation of the size of vortices, reattachment length and heat flow with variable parameters has been obtained.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Mochizukia S, Murataa A, Shibata R, Wang J (1999) Detailed measurements of local heat transfer coefficients in turbulent flow through smooth and rib-roughened serpentine passages with a 180° sharp bend. Int J Heat Mass Transf 42:1925–1934 Mochizukia S, Murataa A, Shibata R, Wang J (1999) Detailed measurements of local heat transfer coefficients in turbulent flow through smooth and rib-roughened serpentine passages with a 180° sharp bend. Int J Heat Mass Transf 42:1925–1934
2.
go back to reference Hirota M, Fujita H, Syuhada A, Araki S, Yoshida T, Tanaka T (1999) Heat/mass transfer characteristics in two-pass smooth channels with sharp 180-deg turn. Int J Heat Mass Transfer 42:3757–3770CrossRef Hirota M, Fujita H, Syuhada A, Araki S, Yoshida T, Tanaka T (1999) Heat/mass transfer characteristics in two-pass smooth channels with sharp 180-deg turn. Int J Heat Mass Transfer 42:3757–3770CrossRef
3.
go back to reference Chung YM, Tucker PG, Roychowdhury DG (2003) Unsteady laminar flow and convective heat transfer in a sharp 180 bend. Int J Heat Fluid Flow 24:67–76 Chung YM, Tucker PG, Roychowdhury DG (2003) Unsteady laminar flow and convective heat transfer in a sharp 180 bend. Int J Heat Fluid Flow 24:67–76
4.
go back to reference Wang TS, Chyu MK (1994) Heat convection in a 180-deg turning duct with different turn configurations. J Thermophy Heat Transf 8:595–601CrossRef Wang TS, Chyu MK (1994) Heat convection in a 180-deg turning duct with different turn configurations. J Thermophy Heat Transf 8:595–601CrossRef
5.
go back to reference Dhanasekaran TS, Wang T (2012) Numerical model validation and prediction of mist/steam cooling in a 180° bend tube. Int J Heat Mass Transf 55:3818–3828 Dhanasekaran TS, Wang T (2012) Numerical model validation and prediction of mist/steam cooling in a 180° bend tube. Int J Heat Mass Transf 55:3818–3828
7.
go back to reference Johnson AM (1970) Physical processes in geology. Freeman Cooper, San Francisco Johnson AM (1970) Physical processes in geology. Freeman Cooper, San Francisco
8.
go back to reference Hulme G (1974) The interpretation of lava flow morphology. Geophys J R Astr Soc 39:361–383CrossRef Hulme G (1974) The interpretation of lava flow morphology. Geophys J R Astr Soc 39:361–383CrossRef
9.
go back to reference Bird RB, Dai GC, Yarusso BJ (1983) The rheology and flow of viscoplastic materials. Rev Chem Eng 1:1–70CrossRef Bird RB, Dai GC, Yarusso BJ (1983) The rheology and flow of viscoplastic materials. Rev Chem Eng 1:1–70CrossRef
10.
go back to reference Ancey C (2007) Plasticity and geophysical flows. J Non-Newtonian Fluid Mech 142:4–35CrossRef Ancey C (2007) Plasticity and geophysical flows. J Non-Newtonian Fluid Mech 142:4–35CrossRef
11.
go back to reference Coussot P (2014) Yield stress fluid flows: a review of experimental data. J Non-Newtonian Fluid Mech 211:31–49 Coussot P (2014) Yield stress fluid flows: a review of experimental data. J Non-Newtonian Fluid Mech 211:31–49
12.
go back to reference Balmforth NJ, Frigaard IA, Ovarlez G (2014) Yielding to stress: recent developments in viscoplastic fluid mechanics. Annu Rev Fluid Mech 46:21–46MathSciNetCrossRef Balmforth NJ, Frigaard IA, Ovarlez G (2014) Yielding to stress: recent developments in viscoplastic fluid mechanics. Annu Rev Fluid Mech 46:21–46MathSciNetCrossRef
13.
go back to reference Mitsoulis E (2007) Flow of viscoplastic materials: model and computations. Rheol Rev 135:135–178 Mitsoulis E (2007) Flow of viscoplastic materials: model and computations. Rheol Rev 135:135–178
14.
go back to reference Taylor AJ, Wilson SDR (1997) Conduit flow of an incompressible. Yield-Stress Fluid J Rheol 41:93–101 Taylor AJ, Wilson SDR (1997) Conduit flow of an incompressible. Yield-Stress Fluid J Rheol 41:93–101
15.
go back to reference Thong VP, Mitsoulis E (1998) Viscoplastic flows in ducts. The Can J Chem Eng 76:120–125CrossRef Thong VP, Mitsoulis E (1998) Viscoplastic flows in ducts. The Can J Chem Eng 76:120–125CrossRef
16.
go back to reference Moyers-Gonzalez MA, Frigaard IA (2004) Numerical solution of duct flows of multiple visco-plastic fluids. J Non-Newtonian Fluid Mech 122:227–241CrossRef Moyers-Gonzalez MA, Frigaard IA (2004) Numerical solution of duct flows of multiple visco-plastic fluids. J Non-Newtonian Fluid Mech 122:227–241CrossRef
17.
go back to reference Damianou Y, Kaoullas G, Georgiou GC (2016) Cessation of viscoplastic Poiseuille flow in a square duct with wall slip. J Non-Newtonian Fluid Mech 233:13–26MathSciNetCrossRef Damianou Y, Kaoullas G, Georgiou GC (2016) Cessation of viscoplastic Poiseuille flow in a square duct with wall slip. J Non-Newtonian Fluid Mech 233:13–26MathSciNetCrossRef
18.
go back to reference Muravleva EA, Muravleva LV (2009) Unsteady flows of a viscoplastic medium in channels. Mech Solids 44:792–812CrossRef Muravleva EA, Muravleva LV (2009) Unsteady flows of a viscoplastic medium in channels. Mech Solids 44:792–812CrossRef
19.
go back to reference Vola D, Boscardin L, Latche JC (2003) Laminar unsteady flows of Bingham fluids: a numerical strategy and some benchmark results. J Comput Phys 187:441–456MathSciNetCrossRef Vola D, Boscardin L, Latche JC (2003) Laminar unsteady flows of Bingham fluids: a numerical strategy and some benchmark results. J Comput Phys 187:441–456MathSciNetCrossRef
20.
go back to reference Hassan MA, Pathak M, Khan MK (2013) Natural convection of viscoplastic fluids in a square enclosure. ASME J Heat Transf 135:122501CrossRef Hassan MA, Pathak M, Khan MK (2013) Natural convection of viscoplastic fluids in a square enclosure. ASME J Heat Transf 135:122501CrossRef
21.
go back to reference Darbouli M (2013) Rayleigh-Bénard convection for viscoplastic fluids. Phys Fluids 25(2):023101CrossRef Darbouli M (2013) Rayleigh-Bénard convection for viscoplastic fluids. Phys Fluids 25(2):023101CrossRef
22.
go back to reference Karimfazli I, Frigaard IA, Wachs A (2016) Thermal plumes in viscoplastic fluids: flow onset and development. J Fluid Mech 787:474–507MathSciNetCrossRef Karimfazli I, Frigaard IA, Wachs A (2016) Thermal plumes in viscoplastic fluids: flow onset and development. J Fluid Mech 787:474–507MathSciNetCrossRef
23.
go back to reference Peixinho J, Desaubry C, Lebouche M (2008) Heat transfer of a non-Newtonian fluid in transitional pipe flow. Int J Heat Mass Transf 51:198–209CrossRef Peixinho J, Desaubry C, Lebouche M (2008) Heat transfer of a non-Newtonian fluid in transitional pipe flow. Int J Heat Mass Transf 51:198–209CrossRef
24.
go back to reference Forrest G, Wilkinson WL (1973) Laminar heat transfer to temperature-dependent Bingham fluids in tubes. Int J Heat Mass Transf 16:2377–2391CrossRef Forrest G, Wilkinson WL (1973) Laminar heat transfer to temperature-dependent Bingham fluids in tubes. Int J Heat Mass Transf 16:2377–2391CrossRef
Metadata
Title
Convection of Viscoplastic Fluid in U-Tube Bends
Authors
N. H. Khan
M. K. Paswan
M. A. Hassan
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-1071-7_25

Premium Partners