Skip to main content
Top

2023 | OriginalPaper | Chapter

Convective Instability in a Composite Nanofluid Layer Under Local Thermal Non-equilibrium

Authors : Anurag Srivastava, B. S. Bhadauria

Published in: Frontiers in Industrial and Applied Mathematics

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Linear, as well as weakly non-linear, analyses have been done to understand the onset of convection and heat and mass transport in a composite nanofluid horizontal layer heated from below under LTNE (local thermal non-equilibrium) effect. Two different types of nanoparticles are assumed to be suspended in the base fluid. Both the nanoparticles and the base fluid are taken to be at different temperature, and therefore, three temperature model is used for LTNE. Thermal Rayleigh number is evaluated analytically using Galerkin’s approach while non-linear analysis is done numerically. The effect of both top-heavy and bottom-heavy configurations of nanoparticles over convective instability is examined. It is found that the system is more stable in case of bottom-heavy configuration when compared to that of top-heavy case. Moreover, the effect of LTNE depends upon the concentration of nanoparticles significantly. A comparison between streamlines, isotherms and isohalines for both LTE (local thermal equilibrium) and LTNE cases is also presented.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Agarwal, S., Bhadauria, B.S., Siddheshwar, P.G.: Thermal instability of a nanofluid saturating a rotating anisotropic porous medium. STRPM 2(1) (2011) Agarwal, S., Bhadauria, B.S., Siddheshwar, P.G.: Thermal instability of a nanofluid saturating a rotating anisotropic porous medium. STRPM 2(1) (2011)
2.
go back to reference Agarwal, S., Bhadauria, B.S.: Natural convection in a nanofluid saturated rotating porous layer with thermal non-equilibrium model. Transp. Porous Med. 90, 627–654 (2011)CrossRef Agarwal, S., Bhadauria, B.S.: Natural convection in a nanofluid saturated rotating porous layer with thermal non-equilibrium model. Transp. Porous Med. 90, 627–654 (2011)CrossRef
3.
go back to reference Agarwal, S., Sacheti, N.C., Chandran, P., Bhadauria, B.S., Singh, A.K.: Non-linear convective transport in a binary nanofluid saturated porous layer. Transp. Porous Med. 93, 29–49 (2012)CrossRef Agarwal, S., Sacheti, N.C., Chandran, P., Bhadauria, B.S., Singh, A.K.: Non-linear convective transport in a binary nanofluid saturated porous layer. Transp. Porous Med. 93, 29–49 (2012)CrossRef
4.
go back to reference Agarwal, S., Bhadauria, B.S.: Convective heat transport by longitudinal rolls in dilute nanoliquids. J. Nanofluids 3(4) (2014) Agarwal, S., Bhadauria, B.S.: Convective heat transport by longitudinal rolls in dilute nanoliquids. J. Nanofluids 3(4) (2014)
5.
go back to reference Agarwal, S., Rana, P., Bhadauria, B.S.: Rayleigh-Bénard convection in a nanofluid layer using a thermal non-equilibrium model. JHT 136, 122501 (2014) Agarwal, S., Rana, P., Bhadauria, B.S.: Rayleigh-Bénard convection in a nanofluid layer using a thermal non-equilibrium model. JHT 136, 122501 (2014)
7.
go back to reference Akilu, S., Sharma, K.V., Baheta, A.V., Mamat, R.: A review of thermophysical properties of water based composite nanofluids. Renew. Sustain. Energy Rev. 66, 654–678 (2016)CrossRef Akilu, S., Sharma, K.V., Baheta, A.V., Mamat, R.: A review of thermophysical properties of water based composite nanofluids. Renew. Sustain. Energy Rev. 66, 654–678 (2016)CrossRef
8.
go back to reference Baytas, A.C., Pop, I.: Free convection in a square porous cavity using a thermal non-equilibrium model. Int. J. Therm. Sci. 41, 861–870 (2002)CrossRef Baytas, A.C., Pop, I.: Free convection in a square porous cavity using a thermal non-equilibrium model. Int. J. Therm. Sci. 41, 861–870 (2002)CrossRef
9.
go back to reference Baytas, A.C.: Thermal non-equilibrium natural convection in a square enclosure filled with a heat generating solid phase non-Darcy porous medium. Int. J. Energy Res. 27, 975–988 (2003)CrossRef Baytas, A.C.: Thermal non-equilibrium natural convection in a square enclosure filled with a heat generating solid phase non-Darcy porous medium. Int. J. Energy Res. 27, 975–988 (2003)CrossRef
10.
go back to reference Bhadauria, B.S., Srivastava, A.: Combined effect of internal heating and through-flow in a nanofluid saturated porous medium under local thermal nonequilibrium. J. Porous Media 25(2), 75–95 (2022)CrossRef Bhadauria, B.S., Srivastava, A.: Combined effect of internal heating and through-flow in a nanofluid saturated porous medium under local thermal nonequilibrium. J. Porous Media 25(2), 75–95 (2022)CrossRef
11.
go back to reference Gupta, U., Sharma, J., Sharma, V.: Instability of binary nanofluids with magnetic field. Appl. Math. Mech. 36(6), 693–706 (2015)CrossRef Gupta, U., Sharma, J., Sharma, V.: Instability of binary nanofluids with magnetic field. Appl. Math. Mech. 36(6), 693–706 (2015)CrossRef
12.
go back to reference Gupta, U., Sharma, J., Devi, M.: Double-diffusive instability of Casson nanofluids with numerical investigations for blood-based fluid. Eur. Phys. J. Spec. Top. 230, 1435–1445 (2021)CrossRef Gupta, U., Sharma, J., Devi, M.: Double-diffusive instability of Casson nanofluids with numerical investigations for blood-based fluid. Eur. Phys. J. Spec. Top. 230, 1435–1445 (2021)CrossRef
13.
go back to reference Nield, D.A., Kuznetsov, A.V.: Thermal instability in a porous medium layer saturated by a nanofluid: a revised model. Int. J. Heat Mass Transf. 68, 211–214 (2014)CrossRef Nield, D.A., Kuznetsov, A.V.: Thermal instability in a porous medium layer saturated by a nanofluid: a revised model. Int. J. Heat Mass Transf. 68, 211–214 (2014)CrossRef
14.
go back to reference Buongiorno, J.: Convective transport in nanofluids. ASME J. Heat Transfer 128, 240–250 (2006)CrossRef Buongiorno, J.: Convective transport in nanofluids. ASME J. Heat Transfer 128, 240–250 (2006)CrossRef
15.
go back to reference Choi, S.: Enhancing thermal conductivity of fluids with nanoparticles. In: Signier, D.A., Wang, H.P. (eds.) Development and Applications of Non-Newtonian Flows, ASME FED, vol. 231/MD vol. 66, pp. 99–105 (1995) Choi, S.: Enhancing thermal conductivity of fluids with nanoparticles. In: Signier, D.A., Wang, H.P. (eds.) Development and Applications of Non-Newtonian Flows, ASME FED, vol. 231/MD vol. 66, pp. 99–105 (1995)
16.
go back to reference Eastman, J.A., Choi, S.U.S., Li, S., Yu, W., Thompson, L.J.: Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl. Phys. Lett. 78, 718–720 (2001)CrossRef Eastman, J.A., Choi, S.U.S., Li, S., Yu, W., Thompson, L.J.: Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl. Phys. Lett. 78, 718–720 (2001)CrossRef
17.
go back to reference Das, S.K., Putra, N., Thiesen, P., Roetzel, W.: Temperature dependence of thermal conductivity enhancement for nanofluids. ASME J. Heat Transf. 125, 567–574 (2003)CrossRef Das, S.K., Putra, N., Thiesen, P., Roetzel, W.: Temperature dependence of thermal conductivity enhancement for nanofluids. ASME J. Heat Transf. 125, 567–574 (2003)CrossRef
18.
go back to reference Hanemann, T., Szabo, D.V.: Polymer-nanoparticle composites: from synthesis to modern applications. Materials 3, 3468–517 (2010)CrossRef Hanemann, T., Szabo, D.V.: Polymer-nanoparticle composites: from synthesis to modern applications. Materials 3, 3468–517 (2010)CrossRef
19.
go back to reference Kanchana, C., Siddheshwar, P.G., Zhao, Y.: Regulation of heat transfer in Rayleigh-Bénard convection in Newtonian liquids and Newtonian nanoliquids using gravity, boundary temperature and rotational modulations. J. Therm. Anal. Calorim. 142, 1579–1600 (2020)CrossRef Kanchana, C., Siddheshwar, P.G., Zhao, Y.: Regulation of heat transfer in Rayleigh-Bénard convection in Newtonian liquids and Newtonian nanoliquids using gravity, boundary temperature and rotational modulations. J. Therm. Anal. Calorim. 142, 1579–1600 (2020)CrossRef
20.
go back to reference Khanafer, K., Vafai, K., Lightstone, M.: Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int. J. Heat Mass Transf. 46, 3639–3653 (2003)CrossRefMATH Khanafer, K., Vafai, K., Lightstone, M.: Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int. J. Heat Mass Transf. 46, 3639–3653 (2003)CrossRefMATH
21.
go back to reference Kiran, P., Bhadauria, B.S., Kumar, V.: Thermal convection in a nanofluid saturated porous medium with internal heating and gravity modulation. J. Nanofluids 5, 1–12 (2016)CrossRef Kiran, P., Bhadauria, B.S., Kumar, V.: Thermal convection in a nanofluid saturated porous medium with internal heating and gravity modulation. J. Nanofluids 5, 1–12 (2016)CrossRef
22.
go back to reference Kumar, V., Awasthi, M.K.: Thermal instability in a horizontal composite nano-liquid layer. SN Appl. Sci. 2, 380 (2020)CrossRef Kumar, V., Awasthi, M.K.: Thermal instability in a horizontal composite nano-liquid layer. SN Appl. Sci. 2, 380 (2020)CrossRef
23.
go back to reference Kumar, R., Sharma, J., Sood, J.: Rayleigh-Bénard cell formation of green synthesized nano-particles of silver and selenium. Mater. Today: Proc. 28, 1781–1787 (2020) Kumar, R., Sharma, J., Sood, J.: Rayleigh-Bénard cell formation of green synthesized nano-particles of silver and selenium. Mater. Today: Proc. 28, 1781–1787 (2020)
24.
go back to reference Kuznetsov, A.V.: Thermal non-equilibrium forced convection in porous media. In: Ingham, D.B., Pop, I. (eds.) Transport Phenomenon in Porous Media, pp. 103–130. Pergamon, Oxford (1998) Kuznetsov, A.V.: Thermal non-equilibrium forced convection in porous media. In: Ingham, D.B., Pop, I. (eds.) Transport Phenomenon in Porous Media, pp. 103–130. Pergamon, Oxford (1998)
26.
go back to reference Malashetty, M.S., Shivakumara, I.S., Sridhar, K.: The onset of Lapwood-Brinkman convection using a thermal nonequilibrium model. Int. J. Heat Mass Transf. 48, 1155–1163 (2005)CrossRefMATH Malashetty, M.S., Shivakumara, I.S., Sridhar, K.: The onset of Lapwood-Brinkman convection using a thermal nonequilibrium model. Int. J. Heat Mass Transf. 48, 1155–1163 (2005)CrossRefMATH
27.
go back to reference Malashetty, M.S., Shivakumara, I.S., Sridhar, K.: The onset of convection in an anisotropic porous layer using a thermal non-equilibrium model. Transp. Porous Med. 60, 199–215 (2005)CrossRef Malashetty, M.S., Shivakumara, I.S., Sridhar, K.: The onset of convection in an anisotropic porous layer using a thermal non-equilibrium model. Transp. Porous Med. 60, 199–215 (2005)CrossRef
28.
go back to reference Malashetty, M.S., Swamy, M.S., Heera, R.: Double diffusive convection in a porous layer using a thermal non-equilibrium model. Int. J. Therm. Sci. 47, 1131–1147 (2008)CrossRefMATH Malashetty, M.S., Swamy, M.S., Heera, R.: Double diffusive convection in a porous layer using a thermal non-equilibrium model. Int. J. Therm. Sci. 47, 1131–1147 (2008)CrossRefMATH
29.
go back to reference Nield, D.A., Kuznetsov, A.V.: Thermal instability in a porous medium layer saturated by nonofluid. Int. J. Heat Mass Transf. 52, 5796–5801 (2009)CrossRefMATH Nield, D.A., Kuznetsov, A.V.: Thermal instability in a porous medium layer saturated by nonofluid. Int. J. Heat Mass Transf. 52, 5796–5801 (2009)CrossRefMATH
30.
go back to reference Kuznetsov, A.V., Nield, D.A.: Thermal instability in a porous medium layer saturated by nonofluid: Brinkman Model. Transp. Porous Media 81(3), 409–422 (2010)CrossRef Kuznetsov, A.V., Nield, D.A.: Thermal instability in a porous medium layer saturated by nonofluid: Brinkman Model. Transp. Porous Media 81(3), 409–422 (2010)CrossRef
31.
go back to reference Nield, D.A., Kuznetsov, A.V.: The effect of local thermal nonequilibrium on the onset of convection in a nanofluid. J. Heat Transf. 132/052405-1 (2010) Nield, D.A., Kuznetsov, A.V.: The effect of local thermal nonequilibrium on the onset of convection in a nanofluid. J. Heat Transf. 132/052405-1 (2010)
32.
go back to reference Postelnicu, A., Rees, D.A.S.: The onset of Darcy-Brinkman convection in a porous layer using a thermal nonequlibrium model-part I: stress-free boundaries. Int. J. Energy Res. 27, 961–973 (2003)CrossRef Postelnicu, A., Rees, D.A.S.: The onset of Darcy-Brinkman convection in a porous layer using a thermal nonequlibrium model-part I: stress-free boundaries. Int. J. Energy Res. 27, 961–973 (2003)CrossRef
33.
go back to reference Rees, D.A.S., Banu, N.: Onset of Darcy - Bénard convection using a thermal non-equilibrium model. Int. J. Heat Mass Transf. 45, 2221–2228 (2002)CrossRefMATH Rees, D.A.S., Banu, N.: Onset of Darcy - Bénard convection using a thermal non-equilibrium model. Int. J. Heat Mass Transf. 45, 2221–2228 (2002)CrossRefMATH
34.
go back to reference Rees, D.A.S., Pop, I.: Local thermal non-equilibrium in porous medium convection. In: Ingham, D.B., Pop, I. (eds.) Transport Phenomena in Porous Media, vol. III, pp. 147–173. Elsevier, Oxford (2005) Rees, D.A.S., Pop, I.: Local thermal non-equilibrium in porous medium convection. In: Ingham, D.B., Pop, I. (eds.) Transport Phenomena in Porous Media, vol. III, pp. 147–173. Elsevier, Oxford (2005)
35.
go back to reference Saeid, N.H.: Analysis of mixed convection in a vertical porous layer using non-equilibrium model. Int. J. Heat Mass Transf. 47, 5619–5627 (2004)CrossRefMATH Saeid, N.H.: Analysis of mixed convection in a vertical porous layer using non-equilibrium model. Int. J. Heat Mass Transf. 47, 5619–5627 (2004)CrossRefMATH
36.
go back to reference Sarkar, J., Ghosh, P., Adil, A.: A review on hybrid nano fluids: recent research, development and applications. Renew. Sustain. Energy Rev. 43, 164–77 (2015) Sarkar, J., Ghosh, P., Adil, A.: A review on hybrid nano fluids: recent research, development and applications. Renew. Sustain. Energy Rev. 43, 164–77 (2015)
39.
go back to reference Sharma, J., Gupta, U.: Double-diffusive nanofluid convection in porous medium with rotation: Darcy-Brinkman model. Proc. Eng. 127, 783–790 (2015)CrossRef Sharma, J., Gupta, U.: Double-diffusive nanofluid convection in porous medium with rotation: Darcy-Brinkman model. Proc. Eng. 127, 783–790 (2015)CrossRef
41.
go back to reference Sharma, J., Gupta, U., Wanchoo, R.K.: Numerical study on binary nanofluid convection in a rotating porous layer. Differ. Equ. Dyn. Syst. 25(2), 239–249 (2017)CrossRef Sharma, J., Gupta, U., Wanchoo, R.K.: Numerical study on binary nanofluid convection in a rotating porous layer. Differ. Equ. Dyn. Syst. 25(2), 239–249 (2017)CrossRef
42.
go back to reference Sharma, J., Gupta, U.: Nanofluid convection under Hall currents and LTNE effects. Mater. Today: Proc. 26(3), 3369–3377 (2020) Sharma, J., Gupta, U.: Nanofluid convection under Hall currents and LTNE effects. Mater. Today: Proc. 26(3), 3369–3377 (2020)
45.
go back to reference Zhang, Q., Xu, Y., Wang, X., Yao, W.-T.: Recent advances in noble metal based composite nanocatalysts: colloidal synthesis, properties, and catalytic applications. Nanoscale 7, 10559–83 (2015)CrossRef Zhang, Q., Xu, Y., Wang, X., Yao, W.-T.: Recent advances in noble metal based composite nanocatalysts: colloidal synthesis, properties, and catalytic applications. Nanoscale 7, 10559–83 (2015)CrossRef
Metadata
Title
Convective Instability in a Composite Nanofluid Layer Under Local Thermal Non-equilibrium
Authors
Anurag Srivastava
B. S. Bhadauria
Copyright Year
2023
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-19-7272-0_9

Premium Partners