Skip to main content
Top

2023 | OriginalPaper | Chapter

Convergence Analysis of a Layer Resolving Numerical Techniquefor a Class of Coupled System of Singularly Perturbed Parabolic Convection-Diffusion Equations Having an Interface

Authors : S. Chandra Sekhara Rao, Abhay Kumar Chaturvedi

Published in: Frontiers in Industrial and Applied Mathematics

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The chapter focuses on the convergence analysis of a numerical technique for solving a class of coupled systems of singularly perturbed parabolic convection-diffusion equations with an interface. These equations exhibit complex boundary and interior layers, making numerical approximation challenging. The authors design a special finite difference scheme on an appropriate Shishkin mesh, condensed in the layer regions, to discretize the problem. They decompose the exact solution into regular and layer components to derive sharper bounds on the solution and its derivatives. The convergence analysis proves the parameter-uniform convergence of the numerical scheme in a discrete maximum norm. The chapter is structured to cover the properties of the continuous solution, a maximum principle for the operator, and stability results. It also includes a detailed convergence analysis and numerical experiments to validate the theoretical findings. The outcomes demonstrate the effectiveness of the proposed numerical method in handling the complexities of the problem.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
5.
go back to reference Dunne, R.K., O’Riordan, E.: Interior layers arising in linear singularly perturbed differential equations with discontinuous coefficients. In: Proceedings of the Fourth International Conference on Finite Difference Methods: Theory and Applications, pp. 29–38. Lozenetz, Bulgaria (2006) Dunne, R.K., O’Riordan, E.: Interior layers arising in linear singularly perturbed differential equations with discontinuous coefficients. In: Proceedings of the Fourth International Conference on Finite Difference Methods: Theory and Applications, pp. 29–38. Lozenetz, Bulgaria (2006)
6.
go back to reference Gracia, J.L., O’Riordan, E.: A singularly perturbed convection-diffusion problem with a moving interior layer. Int. J. Numer. Anal. Model. 9(4), 823–843 (2012)MATH Gracia, J.L., O’Riordan, E.: A singularly perturbed convection-diffusion problem with a moving interior layer. Int. J. Numer. Anal. Model. 9(4), 823–843 (2012)MATH
10.
go back to reference Linß, T.: Layer-Adapted Meshes for Reaction-Convection-Diffusion Problems. Lecture Notes in Mathematics, vol. 1985. Springer, Berlin (2010) Linß, T.: Layer-Adapted Meshes for Reaction-Convection-Diffusion Problems. Lecture Notes in Mathematics, vol. 1985. Springer, Berlin (2010)
11.
go back to reference Miller, J.J.H., O’Riordan, E., Shishkin, G.I.: Fitted Numerical Methods for Singular Perturbation Problems. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, revised edn. (2012). https://doi.org/10.1142/9789814390743, error estimates in the maximum norm for linear problems in one and two dimensions Miller, J.J.H., O’Riordan, E., Shishkin, G.I.: Fitted Numerical Methods for Singular Perturbation Problems. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, revised edn. (2012). https://​doi.​org/​10.​1142/​9789814390743, error estimates in the maximum norm for linear problems in one and two dimensions
13.
15.
go back to reference Rao, S.C.S., Chawla, S.: Numerical solution for a coupled system of singularly perturbed initial value problems with discontinuous source term. In: Mathematical Analysis and Its Applications. Springer Proceedings in Mathematics and Statistics, vol. 143, pp. 753–764. Springer, New Delhi (2015). https://doi.org/10.1007/978-81-322-2485-3_60 Rao, S.C.S., Chawla, S.: Numerical solution for a coupled system of singularly perturbed initial value problems with discontinuous source term. In: Mathematical Analysis and Its Applications. Springer Proceedings in Mathematics and Statistics, vol. 143, pp. 753–764. Springer, New Delhi (2015). https://​doi.​org/​10.​1007/​978-81-322-2485-3_​60
16.
go back to reference Rao, S.C.S., Chawla, S.: Second order uniformly convergent numerical method for a coupled system of singularly perturbed reaction-diffusion problems with discontinuous source term. In: Boundary and Interior Layers, Computational and Asymptotic Methods—BAIL 2014. Lecture Notes in Computational Science and Engineering, vol. 108, pp. 233–244. Springer, Cham (2015) Rao, S.C.S., Chawla, S.: Second order uniformly convergent numerical method for a coupled system of singularly perturbed reaction-diffusion problems with discontinuous source term. In: Boundary and Interior Layers, Computational and Asymptotic Methods—BAIL 2014. Lecture Notes in Computational Science and Engineering, vol. 108, pp. 233–244. Springer, Cham (2015)
18.
go back to reference Rao, S.C.S., Chawla, S.: The error analysis of finite difference approximation for a system of singularly perturbed semilinear reaction-diffusion equations with discontinuous source term. In: Finite Difference Methods. Lecture Notes in Computational Science, vol. 11386, pp. 175–184. Springer, Cham (2019) Rao, S.C.S., Chawla, S.: The error analysis of finite difference approximation for a system of singularly perturbed semilinear reaction-diffusion equations with discontinuous source term. In: Finite Difference Methods. Lecture Notes in Computational Science, vol. 11386, pp. 175–184. Springer, Cham (2019)
20.
go back to reference Rao, S.C.S., Chawla, S., Chaturvedi, A.K.: Numerical analysis for a class of coupled system of singularly perturbed time-dependent convection-diffusion equations with a discontinuous source term. Numer. Methods Partial Differ. Eq. Accepted, 1–31 (2021). https://doi.org/10.1002/num.22845 Rao, S.C.S., Chawla, S., Chaturvedi, A.K.: Numerical analysis for a class of coupled system of singularly perturbed time-dependent convection-diffusion equations with a discontinuous source term. Numer. Methods Partial Differ. Eq. Accepted, 1–31 (2021). https://​doi.​org/​10.​1002/​num.​22845
21.
go back to reference Roos, H.G., Stynes, M., Tobiska, L.: Robust Numerical Methods for Singularly Perturbed Differential Equations. Springer Series in Computational Mathematics, vol. 24, 2nd edn. Springer, Berlin (2008). convection-diffusion-reaction and flow problems Roos, H.G., Stynes, M., Tobiska, L.: Robust Numerical Methods for Singularly Perturbed Differential Equations. Springer Series in Computational Mathematics, vol. 24, 2nd edn. Springer, Berlin (2008). convection-diffusion-reaction and flow problems
22.
go back to reference Shishkin, G.I., Shishkina, L.P., Hemker, P.W.: A class of singularly perturbed convection-diffusion problems with a moving interior layer. An a posteriori adaptive mesh technique. Comput. Methods Appl. Math. 4(1), 105–127 (2004). https://doi.org/10.2478/cmam-2004-0007 Shishkin, G.I., Shishkina, L.P., Hemker, P.W.: A class of singularly perturbed convection-diffusion problems with a moving interior layer. An a posteriori adaptive mesh technique. Comput. Methods Appl. Math. 4(1), 105–127 (2004). https://​doi.​org/​10.​2478/​cmam-2004-0007
Metadata
Title
Convergence Analysis of a Layer Resolving Numerical Techniquefor a Class of Coupled System of Singularly Perturbed Parabolic Convection-Diffusion Equations Having an Interface
Authors
S. Chandra Sekhara Rao
Abhay Kumar Chaturvedi
Copyright Year
2023
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-19-7272-0_20

Premium Partners