Skip to main content
Top

2024 | OriginalPaper | Chapter

Convergence of the Euler–Maruyama Particle Scheme for a Regularised McKean–Vlasov Equation Arising from the Calibration of Local-Stochastic Volatility Models

Authors : Christoph Reisinger, Maria Olympia Tsianni

Published in: Monte Carlo and Quasi-Monte Carlo Methods

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we study the Euler–Maruyama scheme for a particle method to approximate the McKean–Vlasov dynamics of calibrated local-stochastic volatility (LSV) models. Given the open question of well-posedness of the original problem, we work with regularised coefficients and prove that under certain assumptions on the inputs, the regularised model is well-posed. Using this result, we prove the strong convergence of the Euler–Maruyama scheme to the particle system with rate 1/2 in the step-size and obtain an explicit dependence of the error on the regularisation parameters. Finally, we implement the particle method for the calibration of a Heston-type LSV model to illustrate the convergence in practice and to investigate how the choice of regularisation parameters affects the accuracy of the calibration.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Abergel, F., Tachet, R.: A nonlinear partial integrodifferential equation from mathematical finance. Discret. Contin. Dyn. Syst. 27(3), 907–917 (2010)CrossRef Abergel, F., Tachet, R.: A nonlinear partial integrodifferential equation from mathematical finance. Discret. Contin. Dyn. Syst. 27(3), 907–917 (2010)CrossRef
2.
go back to reference Bao, J., Huang, X.: Approximations of McKean-Vlasov stochastic differential equations with irregular coefficients. J. Theor. Probab. 35, 1187–1215 (2022)MathSciNetCrossRef Bao, J., Huang, X.: Approximations of McKean-Vlasov stochastic differential equations with irregular coefficients. J. Theor. Probab. 35, 1187–1215 (2022)MathSciNetCrossRef
3.
go back to reference Bayer, C., Belomestny, D., Butkovsky, O., Schoenmakers, J.: RKHS regularization of singular local stochastic volatility McKean–Vlasov models (2022). arXiv:2203.01160 Bayer, C., Belomestny, D., Butkovsky, O., Schoenmakers, J.: RKHS regularization of singular local stochastic volatility McKean–Vlasov models (2022). arXiv:​2203.​01160
4.
go back to reference Bossy, M., Talay, D.: A stochastic particle method for the McKean-Vlasov and the Burgers equation. Math. Comput. 66(217), 157–192 (1997)MathSciNetCrossRef Bossy, M., Talay, D.: A stochastic particle method for the McKean-Vlasov and the Burgers equation. Math. Comput. 66(217), 157–192 (1997)MathSciNetCrossRef
5.
go back to reference Cozma, A., Mariapragassam, M., Reisinger, C.: Calibration of a hybrid local-stochastic volatility stochastic rates model with a control variate particle method. SIAM J. Financ. Math. 10(1), (2019) Cozma, A., Mariapragassam, M., Reisinger, C.: Calibration of a hybrid local-stochastic volatility stochastic rates model with a control variate particle method. SIAM J. Financ. Math. 10(1), (2019)
6.
go back to reference Cuchiero, C., Khosrawi, W., Teichmann, J.: A generative adversarial network approach to calibration of local stochastic volatility models. Risks 8(4), (2020) Cuchiero, C., Khosrawi, W., Teichmann, J.: A generative adversarial network approach to calibration of local stochastic volatility models. Risks 8(4), (2020)
7.
go back to reference Djete, M.F.: Non-regular McKean–Vlasov equations and calibration problem in local stochastic volatility models (2022). arXiv:2208.09986 Djete, M.F.: Non-regular McKean–Vlasov equations and calibration problem in local stochastic volatility models (2022). arXiv:​2208.​09986
8.
go back to reference dos Reis, G., Engelhardt, S., Smith, G.: Simulation of McKean-Vlasov SDEs with super–linear growth. IMA J. Numer. Anal. 42(1), 874–922 (2022)MathSciNetCrossRef dos Reis, G., Engelhardt, S., Smith, G.: Simulation of McKean-Vlasov SDEs with super–linear growth. IMA J. Numer. Anal. 42(1), 874–922 (2022)MathSciNetCrossRef
9.
go back to reference dos Reis, G., Salkeld, W., Tugaut, J.: Freidlin–Wentzell LDPs in path space for McKean–Vlasov equations and the functional iterated logarithm law. Ann. Appl. Probab. 29(3), (2017) dos Reis, G., Salkeld, W., Tugaut, J.: Freidlin–Wentzell LDPs in path space for McKean–Vlasov equations and the functional iterated logarithm law. Ann. Appl. Probab. 29(3), (2017)
10.
go back to reference Dupire, B.: Pricing with a smile. Risk 7, 18–20 (1994) Dupire, B.: Pricing with a smile. Risk 7, 18–20 (1994)
11.
go back to reference Dupire, B.: A unified theory of volatility. In: Carr, P. (ed.) Derivatives Pricing: The Classic Collection. Risk publications (1996) Dupire, B.: A unified theory of volatility. In: Carr, P. (ed.) Derivatives Pricing: The Classic Collection. Risk publications (1996)
12.
go back to reference Guo, I., Loeper, G., Wang, S.: Calibration of local-stochastic volatility models by optimal transport. Math. Financ. 23(1), (2022) Guo, I., Loeper, G., Wang, S.: Calibration of local-stochastic volatility models by optimal transport. Math. Financ. 23(1), (2022)
13.
go back to reference Gyöngy, I.: Mimicking the one-dimensional marginal distributions of processes having an Itô differential. Probab. Theory Relat. Fields 71, 501–516 (1986)MathSciNetCrossRef Gyöngy, I.: Mimicking the one-dimensional marginal distributions of processes having an Itô differential. Probab. Theory Relat. Fields 71, 501–516 (1986)MathSciNetCrossRef
14.
go back to reference Guyon, J., Henry-Labordére, P.: Being particular about calibration. Risk 25(1), 92–97 (2012) Guyon, J., Henry-Labordére, P.: Being particular about calibration. Risk 25(1), 92–97 (2012)
15.
go back to reference Guyon, J., Henry-Labordére, P.: Nonlinear Option Pricing. Chapman and Hall/CRC (2013) Guyon, J., Henry-Labordére, P.: Nonlinear Option Pricing. Chapman and Hall/CRC (2013)
16.
go back to reference Jex, M., Henderson, R., Wang, D.: Pricing exotics under the smile. Risk 12, 72–75 (1999) Jex, M., Henderson, R., Wang, D.: Pricing exotics under the smile. Risk 12, 72–75 (1999)
17.
go back to reference Jourdain, B., Zhou, A.: Existence of a calibrated regime switching local volatility model. Math. Financ. 30(2), 501–546 (2020)MathSciNetCrossRef Jourdain, B., Zhou, A.: Existence of a calibrated regime switching local volatility model. Math. Financ. 30(2), 501–546 (2020)MathSciNetCrossRef
18.
go back to reference Kim, H.J., MacEachern, S.N., Jung, Y.: Bandwidth selection for kernel density estimation with a Markov Chain Monte Carlo sample (2016). arXiv:1607.08274 Kim, H.J., MacEachern, S.N., Jung, Y.: Bandwidth selection for kernel density estimation with a Markov Chain Monte Carlo sample (2016). arXiv:​1607.​08274
19.
go back to reference Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations. Stochastic Modelling and Applied Probability, vol. 23. Springer, Berlin (1992) Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations. Stochastic Modelling and Applied Probability, vol. 23. Springer, Berlin (1992)
20.
go back to reference Lacker, D., Shkolnikov, M., Zhang, J.: Inverting the Markovian projection, with an application to local stochastic volatility models. Ann. Probab. 48(5), 2189–2211 (2020)MathSciNetCrossRef Lacker, D., Shkolnikov, M., Zhang, J.: Inverting the Markovian projection, with an application to local stochastic volatility models. Ann. Probab. 48(5), 2189–2211 (2020)MathSciNetCrossRef
21.
go back to reference Lipton, A.: The vol smile problem. Risk 15, 61–65 (2002) Lipton, A.: The vol smile problem. Risk 15, 61–65 (2002)
22.
go back to reference Liu, H., Shi, B., Wu, F.: Tamed Euler-Maruyama approximation of McKean-Vlasov stochastic differential equations with super-linear drift and Hölder diffusion coefficients. Appl. Numer. Math. 183, 56–85 (2023)MathSciNetCrossRef Liu, H., Shi, B., Wu, F.: Tamed Euler-Maruyama approximation of McKean-Vlasov stochastic differential equations with super-linear drift and Hölder diffusion coefficients. Appl. Numer. Math. 183, 56–85 (2023)MathSciNetCrossRef
23.
go back to reference McKean, H.P.: A class of Markov processes associated with nonlinear parabolic equations. Proc. Natl. Acad. Sci. USA 56(6), 1907–1911 (1996)MathSciNetCrossRef McKean, H.P.: A class of Markov processes associated with nonlinear parabolic equations. Proc. Natl. Acad. Sci. USA 56(6), 1907–1911 (1996)MathSciNetCrossRef
24.
go back to reference Piterbarg, V.: Markovian projection method for volatility calibration (2006). SSRN 906473 Piterbarg, V.: Markovian projection method for volatility calibration (2006). SSRN 906473
25.
go back to reference Reisinger, C., Stockinger, W.: An adaptive Euler–Maruyama scheme for McKean–Vlasov SDEs with super-linear growth and application to the mean-field FitzHugh–Nagumo model. J. Comput. Appl. Math. 400, (2022) Reisinger, C., Stockinger, W.: An adaptive Euler–Maruyama scheme for McKean–Vlasov SDEs with super-linear growth and application to the mean-field FitzHugh–Nagumo model. J. Comput. Appl. Math. 400, (2022)
26.
go back to reference Ren, Y., Madan, D., Qian, M.Q.: Calibrating and pricing with embedded local volatility models. Risk 20, 138–143 (2007) Ren, Y., Madan, D., Qian, M.Q.: Calibrating and pricing with embedded local volatility models. Risk 20, 138–143 (2007)
27.
go back to reference Sznitman, A.S.: Topics in propagation of chaos. In: Ecole d’Eté de probabilités de Saint-Flour XIX - 1989. Lecture Notes in Mathematics, vol. 1464. Springer, Berlin (1991) Sznitman, A.S.: Topics in propagation of chaos. In: Ecole d’Eté de probabilités de Saint-Flour XIX - 1989. Lecture Notes in Mathematics, vol. 1464. Springer, Berlin (1991)
28.
go back to reference Villani, C.: Optimal Transport. Grundlehren der Mathematischen Wissenschaften, vol. 338. Springer, Berlin (2009) Villani, C.: Optimal Transport. Grundlehren der Mathematischen Wissenschaften, vol. 338. Springer, Berlin (2009)
29.
go back to reference Zhang, X.: A discretized version of Krylov’s estimate and its applications. Electron. J. Probab. 24, 1–17 (2019)MathSciNetCrossRef Zhang, X.: A discretized version of Krylov’s estimate and its applications. Electron. J. Probab. 24, 1–17 (2019)MathSciNetCrossRef
Metadata
Title
Convergence of the Euler–Maruyama Particle Scheme for a Regularised McKean–Vlasov Equation Arising from the Calibration of Local-Stochastic Volatility Models
Authors
Christoph Reisinger
Maria Olympia Tsianni
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-59762-6_28

Premium Partner