Skip to main content
Top

2024 | OriginalPaper | Chapter

Convolution Neural Network Versus Transfer Learning in Image Classification

Authors : O. Rama Devi, U. Surya Venkata Sekhar, S. Siva Rama Krishna, T. S. Rajarajeswari

Published in: Proceedings of Third International Conference on Computing and Communication Networks

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The objective of this research paper is comprehensive comparative analysis between two prominent approaches, namely Convolutional Neural Networks (CNN) and MobileNetV2-based transfer learning, for the task of image classification. Specifically, the focus is on determining the effectiveness of these approaches in accurately classifying images (in our case it is cat vs. dog) (Szyc in 2018 IEEE 22nd International Conference on Intelligent Engineering Systems (INES). IEEE, 2018 [Szyc, K.: Comparison of different deep-learning methods for image classification. In: 2018 IEEE 22nd International Conference on Intelligent Engineering Systems (INES). IEEE (2018)]). Through meticulous evaluation and comparison of results obtained from a benchmark dataset, this study aims to discern the strengths and limitations of each method. By shedding light on their respective merits, this research contributes to the advancement of image classification techniques and paves the way for further investigations in this domain.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Szyc, K.: Comparison of different deep-learning methods for image classification. In: 2018 IEEE 22nd International Conference on Intelligent Engineering Systems (INES). IEEE (2018) Szyc, K.: Comparison of different deep-learning methods for image classification. In: 2018 IEEE 22nd International Conference on Intelligent Engineering Systems (INES). IEEE (2018)
2.
go back to reference Tiwari, V., et al.: Image classification using deep neural network. In: 2020 2nd International Conference on Advances in Computing, Communication Control and Networking (ICACCCN). IEEE (2020) Tiwari, V., et al.: Image classification using deep neural network. In: 2020 2nd International Conference on Advances in Computing, Communication Control and Networking (ICACCCN). IEEE (2020)
3.
go back to reference He, Z.: Deep learning in image classification: a survey report. In: 2020 2nd International Conference on Information Technology and Computer Application (ITCA). IEEE (2020) He, Z.: Deep learning in image classification: a survey report. In: 2020 2nd International Conference on Information Technology and Computer Application (ITCA). IEEE (2020)
4.
go back to reference Jmour, N., Zayen, S., Abdelkrim, A.: Convolutional neural networks for image classification. In: 2018 International Conference on Advanced Systems and Electric Technologies (IC_ASET). IEEE (2018) Jmour, N., Zayen, S., Abdelkrim, A.: Convolutional neural networks for image classification. In: 2018 International Conference on Advanced Systems and Electric Technologies (IC_ASET). IEEE (2018)
5.
go back to reference Ding, B., Qian, H., Zhou, J.: Activation functions and their characteristics in deep neural networks. In: 2018 Chinese Control and Decision Conference (CCDC). IEEE (2018) Ding, B., Qian, H., Zhou, J.: Activation functions and their characteristics in deep neural networks. In: 2018 Chinese Control and Decision Conference (CCDC). IEEE (2018)
6.
go back to reference Dong, K., et al.: MobileNetV2 model for image classification. In: 2020 2nd International Conference on Information Technology and Computer Application (ITCA). IEEE (2020) Dong, K., et al.: MobileNetV2 model for image classification. In: 2020 2nd International Conference on Information Technology and Computer Application (ITCA). IEEE (2020)
9.
go back to reference Raja Rajeswari.Thota, T.S., Srinivasa Rao, M., Sandhya Rani, N.: Under water image enhancement technique. In: Advancements in Aeromechanical Materials for Manufacturing: ICAAMM-2021 AIP Conference Proceedings, vol. 2492, pp. 030069-1–030069-5. https://doi.org/10.1063/5.0114565. Published by AIP Publishing. 978-0-7354-4438-6/$30.00 Raja Rajeswari.Thota, T.S., Srinivasa Rao, M., Sandhya Rani, N.: Under water image enhancement technique. In: Advancements in Aeromechanical Materials for Manufacturing: ICAAMM-2021 AIP Conference Proceedings, vol. 2492, pp. 030069-1–030069-5. https://​doi.​org/​10.​1063/​5.​0114565. Published by AIP Publishing. 978-0-7354-4438-6/$30.00
Metadata
Title
Convolution Neural Network Versus Transfer Learning in Image Classification
Authors
O. Rama Devi
U. Surya Venkata Sekhar
S. Siva Rama Krishna
T. S. Rajarajeswari
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-0892-5_27