Skip to main content
Top
Published in: Metallurgical and Materials Transactions A 1/2021

12-11-2020

Correlating the Five-Parameter Grain Boundary Character Distribution and Corrosion Behavior of Zinc-Carbon Nanotube Composite Coatings

Authors: K. Sai Jyotheender, Chandan Srivastava

Published in: Metallurgical and Materials Transactions A | Issue 1/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Grain boundary engineering (GBE) of coatings using optimum weight fractions of foreign inclusions can improve corrosion resistance performance. This is illustrated here by correlating the corrosion behavior with the five-parameter grain boundary character distribution analysis of Zn-carbon nanotube (Zn-CNT) composite coatings. Zn-CNT composite coatings with different volume fractions of CNTs were electrodeposited on mild steel substrates by dispersing different amounts of CNTs (4, 6, 8, 10, 15, and 20 mg/L) in the Zn electrolyte bath. All the coatings exhibited compact and crack-free morphology. Electrochemical impedance spectroscopy (EIS) measurements were conducted in 3.5 wt pct NaCl solution. The Nyquist and Bode plots showed a decrease in the coating corrosion rate with initial CNT addition up to the Zn-CNT3 coating (produced from 8 mg/L of CNT in the electrolyte), after which the corrosion resistance decreased with continued addition of CNTs. This showed that an optimum exists for CNT in the Zn coating to achieve high corrosion resistance performance. Orientation distribution maps from the coating cross section were acquired using the electron backscatter diffraction (EBSD) technique for correlating the microstructure with the corrosion data. The lower corrosion rate in the Zn-CNT3 coating was attributed to the strong basal plane texture in grains along the growth direction. The angle/axis misorientation showed that most grain boundaries have [\( 2\overline{11} 0 \)] and [\( 10\bar{1}0 \)] axis misorientations signifying special grain boundaries. The five-parameter analysis showed that these grain boundaries are mostly symmetric and tilt boundaries, which are low-energy boundaries, whereas in Zn and Zn-CNT6 (produced from 20 mg/L of CNT in the electrolyte) coatings, the higher corrosion rates were due to the high fraction of high-angle grain boundaries (HAGBs), grain texture along the growth direction that corresponds to an orientation that is active in the corrosive environment, and the absence of special grain boundaries.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference V. Randle, G.S. Rohrer, H.M. Miller, M. Coleman, and G.T. Owen: Acta Mater., 2008, vol. 56, pp. 2363–73.CrossRef V. Randle, G.S. Rohrer, H.M. Miller, M. Coleman, and G.T. Owen: Acta Mater., 2008, vol. 56, pp. 2363–73.CrossRef
2.
go back to reference S. Yang, Z.J. Wang, H. Kokawa, and Y.S. Sato: J. Mater. Sci., 2007, vol. 42, pp. 847–53.CrossRef S. Yang, Z.J. Wang, H. Kokawa, and Y.S. Sato: J. Mater. Sci., 2007, vol. 42, pp. 847–53.CrossRef
3.
go back to reference C.M. Barr, A.C. Leff, R.W. Demott, R.D. Doherty, and M.L. Taheri: Acta Mater., 2018, vol. 144, pp. 281–91.CrossRef C.M. Barr, A.C. Leff, R.W. Demott, R.D. Doherty, and M.L. Taheri: Acta Mater., 2018, vol. 144, pp. 281–91.CrossRef
4.
go back to reference C.S. Kim, Y. Hu, G.S. Rohrer, and V. Randle: Scr. Mater., 2005, vol. 52, pp. 633–7.CrossRef C.S. Kim, Y. Hu, G.S. Rohrer, and V. Randle: Scr. Mater., 2005, vol. 52, pp. 633–7.CrossRef
5.
go back to reference M. Coleman and V. Randle: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2008, vol. 39, pp. 2175–83. M. Coleman and V. Randle: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2008, vol. 39, pp. 2175–83.
6.
go back to reference A. Ma, S. Jiang, Y. Zheng, Z. Yao, W. Ke, and S. Xia: Acta Metall. Sin. (English Lett.), 2014, vol. 27, pp. 730–38. A. Ma, S. Jiang, Y. Zheng, Z. Yao, W. Ke, and S. Xia: Acta Metall. Sin. (English Lett.), 2014, vol. 27, pp. 730–38.
7.
go back to reference S. Xia, H. Li, T.G. Liu, and B.X. Zhou: J. Nucl. Mater., 2011, vol. 416, pp. 303–10.CrossRef S. Xia, H. Li, T.G. Liu, and B.X. Zhou: J. Nucl. Mater., 2011, vol. 416, pp. 303–10.CrossRef
8.
go back to reference M. Kumar, A.J. Schwartz, and W.E. King: Acta Mater., 2002, vol. 50, pp. 2599–612.CrossRef M. Kumar, A.J. Schwartz, and W.E. King: Acta Mater., 2002, vol. 50, pp. 2599–612.CrossRef
10.
go back to reference V. Randle, G.S. Rohrer, and Y. Hu: Scr. Mater., 2008, vol. 58, pp. 183–6.CrossRef V. Randle, G.S. Rohrer, and Y. Hu: Scr. Mater., 2008, vol. 58, pp. 183–6.CrossRef
11.
go back to reference H. Beladi, Q. Chao, and G.S. Rohrer: Acta Mater., 2014, vol. 80, pp. 478–89.CrossRef H. Beladi, Q. Chao, and G.S. Rohrer: Acta Mater., 2014, vol. 80, pp. 478–89.CrossRef
12.
go back to reference H. Beladi, A. Ghaderi, and G.S. Rohrer: Philos. Mag., 2020, vol. 100, pp. 456–66.CrossRef H. Beladi, A. Ghaderi, and G.S. Rohrer: Philos. Mag., 2020, vol. 100, pp. 456–66.CrossRef
13.
go back to reference M.N. Kelly, K. Glowinski, N.T. Nuhfer, and G.S. Rohrer: Acta Mater., 2016, vol. 111, pp. 22–30.CrossRef M.N. Kelly, K. Glowinski, N.T. Nuhfer, and G.S. Rohrer: Acta Mater., 2016, vol. 111, pp. 22–30.CrossRef
14.
go back to reference I. Ghamarian, P. Samimi, G.S. Rohrer, and P.C. Collins: Acta Mater., 2017, vol. 130, pp. 164–76.CrossRef I. Ghamarian, P. Samimi, G.S. Rohrer, and P.C. Collins: Acta Mater., 2017, vol. 130, pp. 164–76.CrossRef
16.
go back to reference Y. Toshev, V. Mandova, N. Boshkov, D. Stoychev, P. Petrov, N. Tsvetkova, G. Raichevski, C. Tsvetanov, A. Gabev, R. Velev, and K. Kostadinov: Protective Coating of Zinc and Zinc Alloys for Industrial Applications, Woodhead Publishing Limited, 2006. Y. Toshev, V. Mandova, N. Boshkov, D. Stoychev, P. Petrov, N. Tsvetkova, G. Raichevski, C. Tsvetanov, A. Gabev, R. Velev, and K. Kostadinov: Protective Coating of Zinc and Zinc Alloys for Industrial Applications, Woodhead Publishing Limited, 2006.
17.
18.
go back to reference C. Cachet, R. Wiart, and J. Zoppas-Ferreira: Electrochim. Acta, 1993, vol. 38, pp. 311–8.CrossRef C. Cachet, R. Wiart, and J. Zoppas-Ferreira: Electrochim. Acta, 1993, vol. 38, pp. 311–8.CrossRef
19.
go back to reference C. Cachet and R. Wiart: J. Electroanal. Chem., 1981, vol. 129, pp. 103–14.CrossRef C. Cachet and R. Wiart: J. Electroanal. Chem., 1981, vol. 129, pp. 103–14.CrossRef
20.
go back to reference D. Giménez-Romero, J.J. García-Jareño, and F. Vicente: J. Electroanal. Chem., 2004, vol. 572, pp. 235–47.CrossRef D. Giménez-Romero, J.J. García-Jareño, and F. Vicente: J. Electroanal. Chem., 2004, vol. 572, pp. 235–47.CrossRef
21.
22.
go back to reference M. Ohba, T. Scarazzato, D.C.R. Espinosa, and Z. Panossian: Electrochim. Acta, 2019, vol. 309, pp. 86–103.CrossRef M. Ohba, T. Scarazzato, D.C.R. Espinosa, and Z. Panossian: Electrochim. Acta, 2019, vol. 309, pp. 86–103.CrossRef
23.
go back to reference P.I. Nemes, M. Lekka, L. Fedrizzi, and L.M. Muresan: Surf. Coatings Technol., 2014, vol. 252, pp. 102–7.CrossRef P.I. Nemes, M. Lekka, L. Fedrizzi, and L.M. Muresan: Surf. Coatings Technol., 2014, vol. 252, pp. 102–7.CrossRef
24.
go back to reference B.M. Praveen, T.V. Venkatesha, Y.A. Naik, and K. Prashantha: Synth. React. Inorg. Met. Nano Met. Chem., 2007, vol. 37, pp. 461–65. B.M. Praveen, T.V. Venkatesha, Y.A. Naik, and K. Prashantha: Synth. React. Inorg. Met. Nano Met. Chem., 2007, vol. 37, pp. 461–65.
25.
26.
go back to reference G. Roventi, T. Bellezze, and R. Fratesi: J. Appl. Electrochem., 2013, vol. 43, pp. 839–46.CrossRef G. Roventi, T. Bellezze, and R. Fratesi: J. Appl. Electrochem., 2013, vol. 43, pp. 839–46.CrossRef
27.
go back to reference A. Gupta and C. Srivastava: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2020, vol. 51, pp. 4257–73. A. Gupta and C. Srivastava: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2020, vol. 51, pp. 4257–73.
28.
go back to reference S. Arora, N. Kumari, and C. Srivastava: J. Alloys Compd., 2019, vol. 801, pp. 449–59.CrossRef S. Arora, N. Kumari, and C. Srivastava: J. Alloys Compd., 2019, vol. 801, pp. 449–59.CrossRef
29.
go back to reference M.K. Punith Kumar, M.P. Singh, and C. Srivastava: RSC Adv., 2015, vol. 5, pp. 25603–08. M.K. Punith Kumar, M.P. Singh, and C. Srivastava: RSC Adv., 2015, vol. 5, pp. 25603–08.
30.
go back to reference R. Li, J. Liang, Y. Hou, and Q. Chu: RSC Adv., 2015, vol. 5, pp. 60698–707.CrossRef R. Li, J. Liang, Y. Hou, and Q. Chu: RSC Adv., 2015, vol. 5, pp. 60698–707.CrossRef
31.
go back to reference R. M Y and C. Srivastava: Corros. Sci., 2019, vol. 152, pp. 234–48. R. M Y and C. Srivastava: Corros. Sci., 2019, vol. 152, pp. 234–48.
32.
go back to reference B.M. Praveen, T. V. Venkatesha, Y. Arthoba Naik, and K. Prashantha: Surf. Coat. Technol., 2007, vol. 201, pp. 5836–42. B.M. Praveen, T. V. Venkatesha, Y. Arthoba Naik, and K. Prashantha: Surf. Coat. Technol., 2007, vol. 201, pp. 5836–42.
33.
go back to reference K. Deepak, S. Mandal, C.N. Athreya, D.I. Kim, B. de Boer, and V. Subramanya Sarma: Corros. Sci., 2016, vol. 106, pp. 293–97. K. Deepak, S. Mandal, C.N. Athreya, D.I. Kim, B. de Boer, and V. Subramanya Sarma: Corros. Sci., 2016, vol. 106, pp. 293–97.
34.
go back to reference A. Telang, A.S. Gill, M. Kumar, S. Teysseyre, D. Qian, S.R. Mannava, and V.K. Vasudevan: Acta Mater., 2016, vol. 113, pp. 180–93.CrossRef A. Telang, A.S. Gill, M. Kumar, S. Teysseyre, D. Qian, S.R. Mannava, and V.K. Vasudevan: Acta Mater., 2016, vol. 113, pp. 180–93.CrossRef
35.
go back to reference D. An, T.A. Griffiths, P. Konijnenberg, S. Mandal, Z. Wang, and S. Zaefferer: Acta Mater., 2018, vol. 156, pp. 297–309.CrossRef D. An, T.A. Griffiths, P. Konijnenberg, S. Mandal, Z. Wang, and S. Zaefferer: Acta Mater., 2018, vol. 156, pp. 297–309.CrossRef
36.
go back to reference K.S. Jyotheender, A. Gupta, and C. Srivastava: Materialia, 2020, vol. 9, p. 100617.CrossRef K.S. Jyotheender, A. Gupta, and C. Srivastava: Materialia, 2020, vol. 9, p. 100617.CrossRef
37.
go back to reference K. Morshed-Behbahani, P. Najafisayar, M. Pakshir, and M. Shahsavari: Corros. Sci., 2018, vol. 138, pp. 28–41.CrossRef K. Morshed-Behbahani, P. Najafisayar, M. Pakshir, and M. Shahsavari: Corros. Sci., 2018, vol. 138, pp. 28–41.CrossRef
38.
go back to reference K.S. Jyotheender and C. Srivastava: Compos. Part B Eng., 2019, vol. 175, p. 107145.CrossRef K.S. Jyotheender and C. Srivastava: Compos. Part B Eng., 2019, vol. 175, p. 107145.CrossRef
39.
go back to reference V. Ezhilselvi, H. Seenivasan, P. Bera, and C. Anandan: RSC Adv., 2014, vol. 4, pp. 46293–304.CrossRef V. Ezhilselvi, H. Seenivasan, P. Bera, and C. Anandan: RSC Adv., 2014, vol. 4, pp. 46293–304.CrossRef
40.
go back to reference Y. Meng, L. Liu, D. Zhang, C. Dong, Y. Yan, A.A. Volinsky, and L.N. Wang: Bioact. Mater., 2019, vol. 4, pp. 87–96.CrossRef Y. Meng, L. Liu, D. Zhang, C. Dong, Y. Yan, A.A. Volinsky, and L.N. Wang: Bioact. Mater., 2019, vol. 4, pp. 87–96.CrossRef
41.
go back to reference A. Maciej, A. Wadas, M. Sowa, R. Socha, G. Dercz, M. Rabe, and W. Simka: Corros. Sci., 2019, vol. 158, p. 108107.CrossRef A. Maciej, A. Wadas, M. Sowa, R. Socha, G. Dercz, M. Rabe, and W. Simka: Corros. Sci., 2019, vol. 158, p. 108107.CrossRef
42.
go back to reference M.K. Punith Kumar and C. Srivastava: Mater. Charact., 2013, vol. 85, pp. 82–91. M.K. Punith Kumar and C. Srivastava: Mater. Charact., 2013, vol. 85, pp. 82–91.
43.
go back to reference K.E. García, A.L. Morales, C.A. Barrero, and J.M. Greneche: Corros. Sci., 2006, vol. 48, pp. 2813–30.CrossRef K.E. García, A.L. Morales, C.A. Barrero, and J.M. Greneche: Corros. Sci., 2006, vol. 48, pp. 2813–30.CrossRef
44.
go back to reference ASTM Standard G31-72: Standard Practice for Laboratory Immersion Corrosion Testing of Metals, ASTM standards, West Conshohocken, 2004. ASTM Standard G31-72: Standard Practice for Laboratory Immersion Corrosion Testing of Metals, ASTM standards, West Conshohocken, 2004.
45.
go back to reference J. Wang and I.J. Beyerlein: Model. Simul. Mater. Sci. Eng., 2012, vol. 20, pp. 0–22. J. Wang and I.J. Beyerlein: Model. Simul. Mater. Sci. Eng., 2012, vol. 20, pp. 0–22.
46.
go back to reference J. Wang and I.J. Beyerlein: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2012, vol. 43, pp. 3556–69. J. Wang and I.J. Beyerlein: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2012, vol. 43, pp. 3556–69.
Metadata
Title
Correlating the Five-Parameter Grain Boundary Character Distribution and Corrosion Behavior of Zinc-Carbon Nanotube Composite Coatings
Authors
K. Sai Jyotheender
Chandan Srivastava
Publication date
12-11-2020
Publisher
Springer US
Published in
Metallurgical and Materials Transactions A / Issue 1/2021
Print ISSN: 1073-5623
Electronic ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-020-06070-y

Other articles of this Issue 1/2021

Metallurgical and Materials Transactions A 1/2021 Go to the issue

Premium Partners