Skip to main content
Top
Published in:

30-11-2016 | Original Paper

Correlation between magnetic properties and cationic distribution of Zn0.85−x Ni x Mg0.05Cu0.1Fe2O4 nano spinel ferrite: effect of Ni doping

Authors: S. N. Kane, M. Satalkar

Published in: Journal of Materials Science | Issue 6/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The correlation among magnetic properties and cationic distribution of Ni-doped Zn0.85−x Ni x Mg0.05Cu0.1Fe2O4 (x = 0.00, 0.17, 0.34, 0.51, 0.85) ferrite, synthesized using sol–gel auto-combustion process is studied by X-ray diffraction (XRD), scanning electron microscope (SEM), energy-dispersive X-ray analysis (EDAX), and magnetic measurements. XRD patterns revealed a pure phase spinel ferrite structure for all samples with Scherrer’s grain diameter (D) ranging from 33.55 to 42.07 nm. Experimental, theoretical lattice constant (a exp. , a th.), specific surface area (S), and the distances between cations (Me–Me) (b, c, d, e, f) of the annealed Zn–Ni–Mg–Cu ferrite decrease with the increase in Ni doping. Elemental analysis, particle diameter, and surface morphology were examined by EDAX and SEM. Coercivity (H c) and saturation magnetization (M s) of Zn–Ni–Mg–Cu ferrite ranges between 0.97–167.5 Oe and 47.63–136.93 Am2 kg−1, respectively, signifying the soft character of annealed samples. Magnetic parameters such as H c, magnetocrystalline anisotropy (K 1), remanence (M r), and reduced remanent magnetization (M r/M s) increase up to x = 0.51 and then reduce thereafter with Ni doping. Particle size dependence of H c reveals superparamagnetic, single domain, and multi-domain nature of the studied ferrite. Observed similar trend of M s, Néel/experimental magnetic moment (n B N , n B e ) with Ni content (x) follows the Néel’s two-sublattice model of ferrimagnetism and is accredited to the cationic distribution and B–B exchange interaction. All these results establish a strong connection between magnetic properties and cationic distribution of Zn0.85−x Ni x Mg0.05Cu0.1Fe2O4 ferrite.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Liu Y, Zhong Y, Zhang J, Ren Z, Cao S, Yang Z, Gao T (2011) Structure and magnetic properties of MnZn nanoferrites synthesized under a high magnetic field. J Appl Phys 110:074310–074314CrossRef Liu Y, Zhong Y, Zhang J, Ren Z, Cao S, Yang Z, Gao T (2011) Structure and magnetic properties of MnZn nanoferrites synthesized under a high magnetic field. J Appl Phys 110:074310–074314CrossRef
2.
go back to reference Eshraghi M, Kameli P (2011) Magnetic properties of CoFe2O4 nanoparticles prepared by thermal treatment of ball-milled precursors. Curr Appl Phys 11:476–481CrossRef Eshraghi M, Kameli P (2011) Magnetic properties of CoFe2O4 nanoparticles prepared by thermal treatment of ball-milled precursors. Curr Appl Phys 11:476–481CrossRef
3.
go back to reference Goldman A (2006) Modern ferrite technology. Springer, Pittsburgh Goldman A (2006) Modern ferrite technology. Springer, Pittsburgh
4.
go back to reference Roy PK, Bera J (2006) Effect of Mg substitution on electromagnetic properties of (Ni0.25Cu0.20Zn0.55)Fe2O4 ferrite prepared by auto combustion method. J Magn Magn Mater 298:38–42CrossRef Roy PK, Bera J (2006) Effect of Mg substitution on electromagnetic properties of (Ni0.25Cu0.20Zn0.55)Fe2O4 ferrite prepared by auto combustion method. J Magn Magn Mater 298:38–42CrossRef
5.
go back to reference Mahalakshmi S, SrinivasaManja K, Nithiyanantham S (2014) Electrical properties of nanophase ferrites doped with rare earth ions. J Supercond Novel Magn 27:2083–2088CrossRef Mahalakshmi S, SrinivasaManja K, Nithiyanantham S (2014) Electrical properties of nanophase ferrites doped with rare earth ions. J Supercond Novel Magn 27:2083–2088CrossRef
6.
go back to reference Reddy MP, Balakrishnaiah G, Madhuri W, Ramana MV, Reddy NR, Siva Kumar KV, Murthy VRK, Reddy RR (2010) Structural, magnetic and electrical properties of NiCuZn ferrites prepared by microwave sintering method suitable for MLCI applications. J Phys Chem Solids 71:1373–1380CrossRef Reddy MP, Balakrishnaiah G, Madhuri W, Ramana MV, Reddy NR, Siva Kumar KV, Murthy VRK, Reddy RR (2010) Structural, magnetic and electrical properties of NiCuZn ferrites prepared by microwave sintering method suitable for MLCI applications. J Phys Chem Solids 71:1373–1380CrossRef
7.
go back to reference Bachhava SG, Patil RS, Ahirrao PB, Patil AM, Patil DR (2011) Microstructure and magnetic studies of Mg–Ni–Zn–Cu ferrites. Mater Chem Phys 129:1104–1109CrossRef Bachhava SG, Patil RS, Ahirrao PB, Patil AM, Patil DR (2011) Microstructure and magnetic studies of Mg–Ni–Zn–Cu ferrites. Mater Chem Phys 129:1104–1109CrossRef
8.
go back to reference Sujatha Ch, Reddy KV, Babu KS, Reddy ARC, Suresh MB, Rao KH (2012) Structural and magnetic properties of Mg substituted NiCuZn nano ferrites. Phys B 407:1232–1237CrossRef Sujatha Ch, Reddy KV, Babu KS, Reddy ARC, Suresh MB, Rao KH (2012) Structural and magnetic properties of Mg substituted NiCuZn nano ferrites. Phys B 407:1232–1237CrossRef
9.
go back to reference Sujatha Ch, Reddy KV, Babu KS, Reddy ARC, Suresh MB, Rao KH (2013) Effect of Mg substitution on electromagnetic properties of NiCuZn ferrite. J Magn Magn Mater 340:38–45CrossRef Sujatha Ch, Reddy KV, Babu KS, Reddy ARC, Suresh MB, Rao KH (2013) Effect of Mg substitution on electromagnetic properties of NiCuZn ferrite. J Magn Magn Mater 340:38–45CrossRef
10.
go back to reference Sujatha Ch, Reddy KV, Babu KS, Reddy ARC, Suresh MB, Rao KH (2013) Effect of co substitution of Mg and Zn on electromagnetic properties of NiCuZn ferrites. J Phys Chem Solids 74:917–923CrossRef Sujatha Ch, Reddy KV, Babu KS, Reddy ARC, Suresh MB, Rao KH (2013) Effect of co substitution of Mg and Zn on electromagnetic properties of NiCuZn ferrites. J Phys Chem Solids 74:917–923CrossRef
11.
go back to reference Dar MA, Verma V, Gairola SP, Siddiqui WA, Singh RK, Kotnal RK (2012) Low dielectric loss of Mg doped Ni–Cu–Zn nano-ferrites for power applications. Appl Surf Sci 258:5342–5347CrossRef Dar MA, Verma V, Gairola SP, Siddiqui WA, Singh RK, Kotnal RK (2012) Low dielectric loss of Mg doped Ni–Cu–Zn nano-ferrites for power applications. Appl Surf Sci 258:5342–5347CrossRef
12.
go back to reference Chinnasamy CN, Yang A, Yoon SD, Hsu K, Shultz MD, Carpenter EE, Mukerjee S, Vittoria C, Harris VG (2007) Size dependent magnetic properties and cation inversion in chemically synthesized MnFe2O4 nanoparticles. J Appl Phys 101:09M509–09M511 Chinnasamy CN, Yang A, Yoon SD, Hsu K, Shultz MD, Carpenter EE, Mukerjee S, Vittoria C, Harris VG (2007) Size dependent magnetic properties and cation inversion in chemically synthesized MnFe2O4 nanoparticles. J Appl Phys 101:09M509–09M511
13.
go back to reference Kapse VD, Ghosh SA, Raghuwanshi FC, Kapse SD (2009) Nanocrystalline spinel Ni0.6Zn0.4Fe2O4: a novel material for H2S sensing. Mater Chem Phys 113:638–644CrossRef Kapse VD, Ghosh SA, Raghuwanshi FC, Kapse SD (2009) Nanocrystalline spinel Ni0.6Zn0.4Fe2O4: a novel material for H2S sensing. Mater Chem Phys 113:638–644CrossRef
14.
go back to reference Weil L, Bertaut EF, Bochirol L (1950) Propriétés magnétiques et structure de la phase quadratique du ferrite de cuivre. J Phys Radium 11:208–212CrossRef Weil L, Bertaut EF, Bochirol L (1950) Propriétés magnétiques et structure de la phase quadratique du ferrite de cuivre. J Phys Radium 11:208–212CrossRef
15.
go back to reference Tanna AR, Joshi HH (2013) Computer aided X-ray diffraction intensity analysis for spinels: hands-on computing experience. World Acad Sci Eng Technol 75:78 Tanna AR, Joshi HH (2013) Computer aided X-ray diffraction intensity analysis for spinels: hands-on computing experience. World Acad Sci Eng Technol 75:78
16.
go back to reference Smit J, Wijn HPJ (1959) Ferrites: Philips Technical Library. Eindhoven, The Netherlands Smit J, Wijn HPJ (1959) Ferrites: Philips Technical Library. Eindhoven, The Netherlands
17.
go back to reference Sickafus KE, Wills JM, Grimes NW (1999) Spinel compounds: structure and property relations. J Am Ceram Soc 82:3279–3292CrossRef Sickafus KE, Wills JM, Grimes NW (1999) Spinel compounds: structure and property relations. J Am Ceram Soc 82:3279–3292CrossRef
18.
go back to reference Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A32:751–767CrossRef Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A32:751–767CrossRef
19.
go back to reference Qi X, Zhou J, Yue Z, Gui Z, Li L (2003) Permeability and microstructure of manganese modified lithium ferrite prepared by sol–gel auto-combustion method. Mater Sci Eng B 99:278–281CrossRef Qi X, Zhou J, Yue Z, Gui Z, Li L (2003) Permeability and microstructure of manganese modified lithium ferrite prepared by sol–gel auto-combustion method. Mater Sci Eng B 99:278–281CrossRef
20.
go back to reference Satalkar M, Kane SN, Ghosh A, Ghodke N, Barrera G, Celegato F, Coisson M, Tiberto P, Vinai F (2014) Synthesis and soft magnetic properties of Zn0.8−x Ni x Mg0.1Cu0.1Fe2O4 (x = 0.0–0.8) ferrites prepared by sol-gel auto-combustion method. J Alloys Compd 615:S313–S316CrossRef Satalkar M, Kane SN, Ghosh A, Ghodke N, Barrera G, Celegato F, Coisson M, Tiberto P, Vinai F (2014) Synthesis and soft magnetic properties of Zn0.8−x Ni x Mg0.1Cu0.1Fe2O4 (x = 0.0–0.8) ferrites prepared by sol-gel auto-combustion method. J Alloys Compd 615:S313–S316CrossRef
21.
go back to reference Lutterotti L, Scardi P (1990) Simultaneous structure and size-strain refinement by the Rietveld method. J Appl Cryst 23:246–252CrossRef Lutterotti L, Scardi P (1990) Simultaneous structure and size-strain refinement by the Rietveld method. J Appl Cryst 23:246–252CrossRef
22.
go back to reference Batra AS, Satalkar M, Kane SN, Ghosh A, Ghodke N (2014) Influence of Ni substitution on structural and magnetic properties of Zn0.85−x Ni x Mg0.05Cu0.1Fe2O4. AIP Conf Proc 1591:537–539CrossRef Batra AS, Satalkar M, Kane SN, Ghosh A, Ghodke N (2014) Influence of Ni substitution on structural and magnetic properties of Zn0.85−x Ni x Mg0.05Cu0.1Fe2O4. AIP Conf Proc 1591:537–539CrossRef
23.
24.
go back to reference Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675CrossRef Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675CrossRef
25.
go back to reference Chikazumi S (2005) Physics of ferromagnetism. Oxford University Press, Oxford Chikazumi S (2005) Physics of ferromagnetism. Oxford University Press, Oxford
26.
go back to reference Stoner EC, Wohlfarth EP (1948) A mechanism of magnetic hysteresis in heterogeneous alloys. Philos Trans R Soc Lond A 240:599–642CrossRef Stoner EC, Wohlfarth EP (1948) A mechanism of magnetic hysteresis in heterogeneous alloys. Philos Trans R Soc Lond A 240:599–642CrossRef
27.
go back to reference Tirosh E, Shemer G, Markovich G (2006) Optimizing cobalt ferrite nanocrystal synthesis using a magneto-optical probe. Chem Mater 18:465–470CrossRef Tirosh E, Shemer G, Markovich G (2006) Optimizing cobalt ferrite nanocrystal synthesis using a magneto-optical probe. Chem Mater 18:465–470CrossRef
28.
go back to reference Muthuselvam IP, Bhowmik RN (2010) Mechanical alloyed Ho3+ doping in CoFe2O4 spinel ferrite and understanding of magnetic nanodomains. J Magn Magn Mater 322:767–776CrossRef Muthuselvam IP, Bhowmik RN (2010) Mechanical alloyed Ho3+ doping in CoFe2O4 spinel ferrite and understanding of magnetic nanodomains. J Magn Magn Mater 322:767–776CrossRef
29.
go back to reference Pearson RF, Annis AD (1968) Anisotropy of Fe3+ ions in Yttrium iron garnet. J Appl Phys 39:1338–1339CrossRef Pearson RF, Annis AD (1968) Anisotropy of Fe3+ ions in Yttrium iron garnet. J Appl Phys 39:1338–1339CrossRef
30.
go back to reference George M, Nair SS, John AM, Joy PA, Anantharaman MR (2006) Structural, magnetic and electrical properties of the sol-gel prepared Li0.5Fe2.5O4 fine particles. J Phys D Appl Phys 39:900–910CrossRef George M, Nair SS, John AM, Joy PA, Anantharaman MR (2006) Structural, magnetic and electrical properties of the sol-gel prepared Li0.5Fe2.5O4 fine particles. J Phys D Appl Phys 39:900–910CrossRef
31.
go back to reference Berkowitz AE, Schuele WJ (1959) Magnetic properties of some ferrite Micropowders. J Appl Phys 30:S134–S135CrossRef Berkowitz AE, Schuele WJ (1959) Magnetic properties of some ferrite Micropowders. J Appl Phys 30:S134–S135CrossRef
32.
go back to reference Verma A, Chatterjee R (2006) Effect of zinc concentration on the structural, electrical and magnetic properties of mixed Mn–Zn and Ni–Zn ferrites synthesized by the citrate precursor technique. J Magn Magn Mater 306:313–320CrossRef Verma A, Chatterjee R (2006) Effect of zinc concentration on the structural, electrical and magnetic properties of mixed Mn–Zn and Ni–Zn ferrites synthesized by the citrate precursor technique. J Magn Magn Mater 306:313–320CrossRef
33.
go back to reference Panchal S, Raghuvanshi S, Gehlot K, Mazaleyrat F, Kane SN (2016) Cationic distribution assisted tuning of magnetic properties of Li0.5−x/2Zn x Fe2.5−x/2O4. AIP Adv 6:055930–055936CrossRef Panchal S, Raghuvanshi S, Gehlot K, Mazaleyrat F, Kane SN (2016) Cationic distribution assisted tuning of magnetic properties of Li0.5−x/2Zn x Fe2.5−x/2O4. AIP Adv 6:055930–055936CrossRef
Metadata
Title
Correlation between magnetic properties and cationic distribution of Zn0.85−x Ni x Mg0.05Cu0.1Fe2O4 nano spinel ferrite: effect of Ni doping
Authors
S. N. Kane
M. Satalkar
Publication date
30-11-2016
Publisher
Springer US
Published in
Journal of Materials Science / Issue 6/2017
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0636-7

Other articles of this Issue 6/2017

Journal of Materials Science 6/2017 Go to the issue

Premium Partners