Skip to main content
Top
Published in: Rare Metals 1/2019

06-12-2018

Correlation of microstructure and magnetic properties in Sm(CobalFe0.1Cu0.1Zr0.033)6.93 magnets solution-treated at different temperatures

Authors: Cheng Xu, Hui Wang, Tian-Li Zhang, Alexander Popov, Raghavan Gopalan, Cheng-Bao Jiang

Published in: Rare Metals | Issue 1/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The correlation of microstructure and magnetic properties in Sm(CobalFe0.1Cu0.1Zr0.033)6.93 magnets solution-treated at different temperatures was systematically investigated. It is found that the magnets solution-treated at 1219 °C possess a single 1:7H phase, exhibiting the homogeneous cellular structure during further aging treatment, leading to the optimum magnetic properties. However, for the magnets solution-treated at 1211 and 1223 °C, 2:17H or 1:5H secondary phase will also form besides 1:7H main phase, which cannot transform into cellular structure, thus deteriorating the magnetic properties greatly. The irreversible magnetization investigations with recoil loops also propose a non-uniform pinning in the magnets induced by the secondary precipitates. At proper solution temperature, Zr is supposed to occupy the Fe–Fe dumbbell sites in the form of Zr-vacancy pairs, leading to the minimum c/a ratio and thus stabilizing the 1:7H phase. Finally, Sm(CobalFe0.1Cu0.1Zr0.033)6.93 magnets with the maximum energy product and intrinsic coercivity at 550 °C up to 60.73 kJ·m−3 and 553.88 kA·m−1 were prepared by powder metallurgy method.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
[1]
go back to reference Pathak AK, Khan M, Gschneidner KA, McCallum RW, Zhou L, Sun K, Dennis KW, Zhou C, Pinkerton FE, Kramer MJ. Cerium: an unlikely replacement of dysprosium in high performance Nd–Fe–B permanent magnets. Adv Mater. 2015;27(16):2663.CrossRef Pathak AK, Khan M, Gschneidner KA, McCallum RW, Zhou L, Sun K, Dennis KW, Zhou C, Pinkerton FE, Kramer MJ. Cerium: an unlikely replacement of dysprosium in high performance Nd–Fe–B permanent magnets. Adv Mater. 2015;27(16):2663.CrossRef
[2]
go back to reference Gutfleisch O, Müller KH, Khlopkov K, Wolf M, Yan A, Schäfer R, Gemming T, Schultz L. Evolution of magnetic domain structures and coercivity in high-performance SmCo 2:17-type permanent magnets. Acta Mater. 2006;54(4):997.CrossRef Gutfleisch O, Müller KH, Khlopkov K, Wolf M, Yan A, Schäfer R, Gemming T, Schultz L. Evolution of magnetic domain structures and coercivity in high-performance SmCo 2:17-type permanent magnets. Acta Mater. 2006;54(4):997.CrossRef
[3]
go back to reference Gutfleisch O, Willard MA, Brück E, Chen CH, Sankar S, Liu JP. Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient. Adv Mater. 2011;23(7):821.CrossRef Gutfleisch O, Willard MA, Brück E, Chen CH, Sankar S, Liu JP. Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient. Adv Mater. 2011;23(7):821.CrossRef
[4]
go back to reference Kumar S, Kumar R, Chakarvarti S. Morphological and magnetic characterization of electrodeposited cobalt nanowires. J Mater Sci. 2004;39(8):2951.CrossRef Kumar S, Kumar R, Chakarvarti S. Morphological and magnetic characterization of electrodeposited cobalt nanowires. J Mater Sci. 2004;39(8):2951.CrossRef
[5]
go back to reference Saini D, Chauhan R, Kumar S. Effects of annealing on structural and magnetic properties of template synthesized cobalt nanowires useful as data storage and nano devices. J Mater Sci Mater Electron. 2014;25(1):124.CrossRef Saini D, Chauhan R, Kumar S. Effects of annealing on structural and magnetic properties of template synthesized cobalt nanowires useful as data storage and nano devices. J Mater Sci Mater Electron. 2014;25(1):124.CrossRef
[6]
go back to reference An S, Zheng L, Zhang T, Jiang C. Bulk anisotropic nanocrystalline SmCo6.6Ti0.4 permanent magnets. Scr Mater. 2013;68(6):432.CrossRef An S, Zheng L, Zhang T, Jiang C. Bulk anisotropic nanocrystalline SmCo6.6Ti0.4 permanent magnets. Scr Mater. 2013;68(6):432.CrossRef
[7]
go back to reference Ma Z, Zhang T, Jiang C. A facile synthesis of high performance SmCo5 nanoparticles. Chem Eng. 2015;264:610.CrossRef Ma Z, Zhang T, Jiang C. A facile synthesis of high performance SmCo5 nanoparticles. Chem Eng. 2015;264:610.CrossRef
[8]
go back to reference Ma Z, Zhang T, Jiang C. Exchange-coupled SmCo5/Co nanocomposites synthesized by a novel strategy. RSC Adv. 2015;5(108):89128.CrossRef Ma Z, Zhang T, Jiang C. Exchange-coupled SmCo5/Co nanocomposites synthesized by a novel strategy. RSC Adv. 2015;5(108):89128.CrossRef
[9]
go back to reference Hadjipanayis GC. Magnetic hardening in Zr-substituted 2:17 rare-earth permanent magnets. J Appl Phys. 1984;55(6):2091.CrossRef Hadjipanayis GC. Magnetic hardening in Zr-substituted 2:17 rare-earth permanent magnets. J Appl Phys. 1984;55(6):2091.CrossRef
[10]
go back to reference Ray A. The development of high energy product permanent magnets from 2:17 RE-TM alloys. IEEE Trans Magn. 1984;20(5):1614.CrossRef Ray A. The development of high energy product permanent magnets from 2:17 RE-TM alloys. IEEE Trans Magn. 1984;20(5):1614.CrossRef
[11]
go back to reference Zhang XF, Zhang WK, Li YF, Liu YL, Li ZB, Ma Q, Shi MF, Liu F. Magnetic properties of melt-spun MM–Fe–B ribbons with different wheel speeds and mischmetal contents. Rare Met. 2017;36(12):992.CrossRef Zhang XF, Zhang WK, Li YF, Liu YL, Li ZB, Ma Q, Shi MF, Liu F. Magnetic properties of melt-spun MM–Fe–B ribbons with different wheel speeds and mischmetal contents. Rare Met. 2017;36(12):992.CrossRef
[12]
go back to reference Yu N, Zhu M, Fang Y, Song L, Sun W, Song K, Wang Q, Li W. The microstructure and magnetic characteristics of Sm(CobalFe0.1Cu0.09Zr0.03)7.24 high temperature permanent magnets. Scr Mater. 2017;132:44.CrossRef Yu N, Zhu M, Fang Y, Song L, Sun W, Song K, Wang Q, Li W. The microstructure and magnetic characteristics of Sm(CobalFe0.1Cu0.09Zr0.03)7.24 high temperature permanent magnets. Scr Mater. 2017;132:44.CrossRef
[13]
go back to reference Zhang T, Liu H, Liu J, Jiang C. 2:17-type SmCo quasi-single-crystal high temperature magnets. Appl Phys Lett. 2015;106(16):162403.CrossRef Zhang T, Liu H, Liu J, Jiang C. 2:17-type SmCo quasi-single-crystal high temperature magnets. Appl Phys Lett. 2015;106(16):162403.CrossRef
[14]
go back to reference Zhang T, Liu H, Ma Z, Jiang C. Single crystal growth and magnetic properties of 2:17-type SmCo magnets. J Alloys Compd. 2015;637:637. Zhang T, Liu H, Ma Z, Jiang C. Single crystal growth and magnetic properties of 2:17-type SmCo magnets. J Alloys Compd. 2015;637:637.
[15]
go back to reference Wang Q, Zheng L, An S, Zhang T, Jiang C. Thermal stability of surface modified Sm2Co17-type high temperature magnets. J Magn Magn Mater. 2013;331:245.CrossRef Wang Q, Zheng L, An S, Zhang T, Jiang C. Thermal stability of surface modified Sm2Co17-type high temperature magnets. J Magn Magn Mater. 2013;331:245.CrossRef
[16]
go back to reference Mishra RK, Thomas G, Yoneyama T, Fukuno A, Ojima T. Microstructure and properties of step aged rare earth alloy magnets. J Appl Phys. 1981;52(3):2517.CrossRef Mishra RK, Thomas G, Yoneyama T, Fukuno A, Ojima T. Microstructure and properties of step aged rare earth alloy magnets. J Appl Phys. 1981;52(3):2517.CrossRef
[17]
go back to reference Rabenberg L, Mishra R, Thomas G. Microstructures of precipitation-hardened SmCo permanent magnets. J Appl Phys. 1982;53(3):2389.CrossRef Rabenberg L, Mishra R, Thomas G. Microstructures of precipitation-hardened SmCo permanent magnets. J Appl Phys. 1982;53(3):2389.CrossRef
[18]
go back to reference Jiang C, Hua H, Wang J. Thermomagnetic coupling martensitic transformation and associated physical effects. Chin J Rare Met. 2017;41(5):505. Jiang C, Hua H, Wang J. Thermomagnetic coupling martensitic transformation and associated physical effects. Chin J Rare Met. 2017;41(5):505.
[19]
go back to reference Romero S, de Campos M, de Castro J, Moreira A, Landgraf F. Microstructural changes during the slow-cooling annealing of nanocrystalline SmCo 2:17 type magnets. J Alloys Compd. 2013;551:312.CrossRef Romero S, de Campos M, de Castro J, Moreira A, Landgraf F. Microstructural changes during the slow-cooling annealing of nanocrystalline SmCo 2:17 type magnets. J Alloys Compd. 2013;551:312.CrossRef
[20]
go back to reference Gopalan R, Ohkubo T, Hono K. Identification of the cell boundary phase in the isothermally aged commercial Sm(Co0.725Fe0.1Cu0.12Zr0.04)7.4 sintered magnet. Scr Mater. 2006;54(7):1345.CrossRef Gopalan R, Ohkubo T, Hono K. Identification of the cell boundary phase in the isothermally aged commercial Sm(Co0.725Fe0.1Cu0.12Zr0.04)7.4 sintered magnet. Scr Mater. 2006;54(7):1345.CrossRef
[21]
go back to reference Gopalan R, Hono K, Yan A, Gutfleisch O. Direct evidence for Cu concentration variation and its correlation to coercivity in Sm(Co0.74Fe0.1Cu0.12Zr0.04)7.4 ribbons. Scr Mater. 2009;60(9):764.CrossRef Gopalan R, Hono K, Yan A, Gutfleisch O. Direct evidence for Cu concentration variation and its correlation to coercivity in Sm(Co0.74Fe0.1Cu0.12Zr0.04)7.4 ribbons. Scr Mater. 2009;60(9):764.CrossRef
[22]
go back to reference Xiong X, Ohkubo T, Koyama T, Ohashi K, Tawara Y, Hono K. The microstructure of sintered Sm(Co0.72Fe0.20Cu0.055Zr0.025)7.5 permanent magnet studied by atom probe. Acta Mater. 2004;52(3):737.CrossRef Xiong X, Ohkubo T, Koyama T, Ohashi K, Tawara Y, Hono K. The microstructure of sintered Sm(Co0.72Fe0.20Cu0.055Zr0.025)7.5 permanent magnet studied by atom probe. Acta Mater. 2004;52(3):737.CrossRef
[23]
go back to reference Goll D, Kronmüller H, Stadelmaier H. Micromagnetism and the microstructure of high-temperature permanent magnets. J Appl Phys. 2004;96(11):6534.CrossRef Goll D, Kronmüller H, Stadelmaier H. Micromagnetism and the microstructure of high-temperature permanent magnets. J Appl Phys. 2004;96(11):6534.CrossRef
[24]
go back to reference Mori Y, Umeda T, Kimura Y. Phase transformation at high temperature and coercivity of Sm (Co, Cu, Fe, Zr)7-9 magnet alloys. IEEE Trans Magn. 1987;23(5):2702.CrossRef Mori Y, Umeda T, Kimura Y. Phase transformation at high temperature and coercivity of Sm (Co, Cu, Fe, Zr)7-9 magnet alloys. IEEE Trans Magn. 1987;23(5):2702.CrossRef
[25]
go back to reference Livingston J, Martin D. Microstructure of aged Sm(Co, Cu, Fe)7 magnets. J Appl Phys. 1977;48(3):1350.CrossRef Livingston J, Martin D. Microstructure of aged Sm(Co, Cu, Fe)7 magnets. J Appl Phys. 1977;48(3):1350.CrossRef
[26]
go back to reference Maury C, Rabenberg L, Allibert C. Genesis of the cell microstructure in the Sm (Co, Fe, Cu, Zr) permanent magnets with 2:17 type. Phys Status Solidi A. 1993;140(1):57.CrossRef Maury C, Rabenberg L, Allibert C. Genesis of the cell microstructure in the Sm (Co, Fe, Cu, Zr) permanent magnets with 2:17 type. Phys Status Solidi A. 1993;140(1):57.CrossRef
[27]
go back to reference Fidler J, Bernardi J, Skalicky P. Analytical electron microscope study of high-and low-coercivity SmCo 2:17 magnets. MRS Online Proc Libr. 1987;96:181.CrossRef Fidler J, Bernardi J, Skalicky P. Analytical electron microscope study of high-and low-coercivity SmCo 2:17 magnets. MRS Online Proc Libr. 1987;96:181.CrossRef
[28]
go back to reference Fidler J, Bernardi J, Ohashi K, Tawara Y. Analytical electron microscopy of Sm (Co, Fe, Cu, Zr)9. IEEE Trans Magn. 1990;26(5):1385.CrossRef Fidler J, Bernardi J, Ohashi K, Tawara Y. Analytical electron microscopy of Sm (Co, Fe, Cu, Zr)9. IEEE Trans Magn. 1990;26(5):1385.CrossRef
[29]
go back to reference Ray A. Metallurgical behavior of Sm (Co, Fe, Cu, Zr)z alloys. J Appl Phys. 1984;55(6):2094.CrossRef Ray A. Metallurgical behavior of Sm (Co, Fe, Cu, Zr)z alloys. J Appl Phys. 1984;55(6):2094.CrossRef
[30]
go back to reference Ray AE, Soffa WA, Blachere JR, Zhang B. Cellular microstructure development in Sm(Co,Fe,Cu,Zr)8.35 alloys. IEEE Trans Magn. 1987;23(5):2711.CrossRef Ray AE, Soffa WA, Blachere JR, Zhang B. Cellular microstructure development in Sm(Co,Fe,Cu,Zr)8.35 alloys. IEEE Trans Magn. 1987;23(5):2711.CrossRef
[31]
go back to reference Ray A. A revised model for the metallurgical behavior of 2:17-type permanent magnet alloys. J Appl Phys. 1990;67(9):4972.CrossRef Ray A. A revised model for the metallurgical behavior of 2:17-type permanent magnet alloys. J Appl Phys. 1990;67(9):4972.CrossRef
[32]
go back to reference Gopalan R, Sastry T, Singh A, Chandrasekaran V. X-ray diffraction and microstructural studies in 2:17 type Sm–Co magnetic alloys containing Fe, Cu, and Zr. J Mater Res. 1999;14(06):2430.CrossRef Gopalan R, Sastry T, Singh A, Chandrasekaran V. X-ray diffraction and microstructural studies in 2:17 type Sm–Co magnetic alloys containing Fe, Cu, and Zr. J Mater Res. 1999;14(06):2430.CrossRef
[33]
go back to reference Gopalan R, Muraleedharan K, Sastry T, Singh A, Joshi V, Rao DS, Chandrasekaran V. Studies on structural transformation and magnetic properties in Sm2Co17 type alloys. J Mater Sci. 2001;36(17):4117.CrossRef Gopalan R, Muraleedharan K, Sastry T, Singh A, Joshi V, Rao DS, Chandrasekaran V. Studies on structural transformation and magnetic properties in Sm2Co17 type alloys. J Mater Sci. 2001;36(17):4117.CrossRef
[34]
go back to reference Fang Y, Chang H, Guo Z, Liu T, Li X, Li W, Chang W, Han B. Magnetic microstructures of phase-separated Sm–Co 2:17-type sintered magnets. J Alloys Compd. 2008;462(1):376.CrossRef Fang Y, Chang H, Guo Z, Liu T, Li X, Li W, Chang W, Han B. Magnetic microstructures of phase-separated Sm–Co 2:17-type sintered magnets. J Alloys Compd. 2008;462(1):376.CrossRef
[35]
go back to reference Horiuchi Y, Hagiwara M, Okamoto K, Kobayashi T, Endo M, Nakamura T, Sakurada S. Effects of solution treated temperature on the structural and magnetic properties of iron-rich Sm(CoFeCuZr)z sintered magnet. IEEE Trans Magn. 2013;49(7):3221.CrossRef Horiuchi Y, Hagiwara M, Okamoto K, Kobayashi T, Endo M, Nakamura T, Sakurada S. Effects of solution treated temperature on the structural and magnetic properties of iron-rich Sm(CoFeCuZr)z sintered magnet. IEEE Trans Magn. 2013;49(7):3221.CrossRef
[36]
go back to reference Machida H, Fujiwara T, Kamada R, Morimoto Y, Takezawa M. The high squareness Sm-Co magnet having H cb = 10.6 kOe at 150 °C. AIP Adv. 2017;7(5):056223.CrossRef Machida H, Fujiwara T, Kamada R, Morimoto Y, Takezawa M. The high squareness Sm-Co magnet having H cb = 10.6 kOe at 150 °C. AIP Adv. 2017;7(5):056223.CrossRef
[37]
go back to reference Liu J, Hadjipanayis G. Demagnetization curves and coercivity mechanism in Sm(CoFeCuZr)z magnets. J Magn Magn Mater. 1999;195(3):620.CrossRef Liu J, Hadjipanayis G. Demagnetization curves and coercivity mechanism in Sm(CoFeCuZr)z magnets. J Magn Magn Mater. 1999;195(3):620.CrossRef
[38]
go back to reference Nagamine L, Rechenberg H, Ray A. Fe site populations in Sm2 (Co, Fe) 17 and Sm (Co, Fe, Cu, Zr)8.35 alloys. J Magn Magn Mater. 1990;89(3):270.CrossRef Nagamine L, Rechenberg H, Ray A. Fe site populations in Sm2 (Co, Fe) 17 and Sm (Co, Fe, Cu, Zr)8.35 alloys. J Magn Magn Mater. 1990;89(3):270.CrossRef
[39]
go back to reference Feutrill E, McCormick P, Street R. Magnetization behaviour in exchange-coupled-Fe. J Phys D Appl Phys. 1996;29(9):2320.CrossRef Feutrill E, McCormick P, Street R. Magnetization behaviour in exchange-coupled-Fe. J Phys D Appl Phys. 1996;29(9):2320.CrossRef
[40]
go back to reference Li Z, Zhang M, Shen B, Sun J. Non-uniform magnetization reversal in nanocomposite magnets. Appl Phys Lett. 2013;102(10):102405.CrossRef Li Z, Zhang M, Shen B, Sun J. Non-uniform magnetization reversal in nanocomposite magnets. Appl Phys Lett. 2013;102(10):102405.CrossRef
[41]
go back to reference Yan A, Bollero A, Gutfleisch O, Müller KH. Microstructure and magnetization reversal in nanocomposite SmCo5/Sm2Co17 magnets. J Appl Phys. 2002;91(4):2192.CrossRef Yan A, Bollero A, Gutfleisch O, Müller KH. Microstructure and magnetization reversal in nanocomposite SmCo5/Sm2Co17 magnets. J Appl Phys. 2002;91(4):2192.CrossRef
Metadata
Title
Correlation of microstructure and magnetic properties in Sm(CobalFe0.1Cu0.1Zr0.033)6.93 magnets solution-treated at different temperatures
Authors
Cheng Xu
Hui Wang
Tian-Li Zhang
Alexander Popov
Raghavan Gopalan
Cheng-Bao Jiang
Publication date
06-12-2018
Publisher
Nonferrous Metals Society of China
Published in
Rare Metals / Issue 1/2019
Print ISSN: 1001-0521
Electronic ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-018-1182-z

Other articles of this Issue 1/2019

Rare Metals 1/2019 Go to the issue

Premium Partners