Skip to main content
Top
Published in: Journal of Materials Science 17/2018

04-06-2018 | Energy materials

Cost-effective fabrication and high-frequency response of non-ideal RC application based on 3D porous laser-induced graphene

Authors: Jianxiong Zhu, Xiaoyu Guo, Hui Wang, Weixing Song

Published in: Journal of Materials Science | Issue 17/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This work presents a design, fabrication, modeling and frequency response of 3D porous graphene circuit elements for a non-ideal resistor–capacitor (RC) circuit application based on a CO2 infrared laser direct writing method. The material properties of laser-induced graphene (LIG) were carefully analyzed by Raman, SEM and XRD. The room-temperature experiment of the non-ideal RC circuit from 3D porous LIG was conducted by three different electrical frequencies. The results showed that the parallel non-ideal capacitors had ~ 10% electrical response differences than with a single or a series porous graphene capacitor element. Furthermore, we demonstrated that the experiment result and the numerical simulation result of the porous graphene circuit elements were in good agreement. Moreover, the 3D porous graphene-based non-ideal RC circuit was demonstrated a 300 kHz cutoff frequency by an impedance analyzer. Compared with other methods for graphene of circuit elements system, this LIG method not only has the advantage of a one-step processing of 3D porous graphene circuit elements in air, but also provided a rapid realization of graphene-based circuit elements system on polymer.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Aydogan P, Balci O, Kocabas C, Suzer S (2016) Monitoring the operation of a graphene transistor in an integrated circuit by XPS. Org Electron 37:178–182CrossRef Aydogan P, Balci O, Kocabas C, Suzer S (2016) Monitoring the operation of a graphene transistor in an integrated circuit by XPS. Org Electron 37:178–182CrossRef
2.
go back to reference Bae SH, Lee Y, Sharma BK, Lee HJ, Kim JH, Ahn JH (2013) Graphene-based transparent strain sensor. Carbon 51:236–242CrossRef Bae SH, Lee Y, Sharma BK, Lee HJ, Kim JH, Ahn JH (2013) Graphene-based transparent strain sensor. Carbon 51:236–242CrossRef
3.
go back to reference Bozzi M, Pierantoni L, Bellucci S (2015) Applications of graphene at microwave frequencies. Radioengineering 24:661–669CrossRef Bozzi M, Pierantoni L, Bellucci S (2015) Applications of graphene at microwave frequencies. Radioengineering 24:661–669CrossRef
4.
go back to reference Chae SH, Lee YH (2014) Carbon nanotubes and graphene towards soft electronics. Nano Converg 1:1–26CrossRef Chae SH, Lee YH (2014) Carbon nanotubes and graphene towards soft electronics. Nano Converg 1:1–26CrossRef
5.
go back to reference Chen YM, He SM, Huang CH, Huang CC, Shih WP, Chu CL, Su CY (2016) Ultra-large suspended graphene as a highly elastic membrane for capacitive pressure sensors. Nanoscale 8:3555–3564CrossRef Chen YM, He SM, Huang CH, Huang CC, Shih WP, Chu CL, Su CY (2016) Ultra-large suspended graphene as a highly elastic membrane for capacitive pressure sensors. Nanoscale 8:3555–3564CrossRef
6.
go back to reference Chun S, Kim Y, Jin H, Choi E, Lee SB, Park W (2014) A graphene force sensor with pressure-amplifying structure. Carbon 78:601–608CrossRef Chun S, Kim Y, Jin H, Choi E, Lee SB, Park W (2014) A graphene force sensor with pressure-amplifying structure. Carbon 78:601–608CrossRef
7.
go back to reference El-Kady MF, Kaner RB (2013) Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat Commun 4:1–9CrossRef El-Kady MF, Kaner RB (2013) Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat Commun 4:1–9CrossRef
8.
go back to reference Janczak D, Sloma M, Wroblewski G, Mlozniak A, Jakubowska M (2014) Screen-printed resistive pressure sensors containing graphene nanoplatelets and carbon nanotubes. Sensors (Basel) 14:17304–17312CrossRef Janczak D, Sloma M, Wroblewski G, Mlozniak A, Jakubowska M (2014) Screen-printed resistive pressure sensors containing graphene nanoplatelets and carbon nanotubes. Sensors (Basel) 14:17304–17312CrossRef
9.
go back to reference Lin J, Peng Z, Liu Y, Ruiz-Zepeda F, Ye R, Samuel EL, Tour JM (2014) Laser-induced porous graphene films from commercial polymers. Nat Commun 5:1–8 Lin J, Peng Z, Liu Y, Ruiz-Zepeda F, Ye R, Samuel EL, Tour JM (2014) Laser-induced porous graphene films from commercial polymers. Nat Commun 5:1–8
10.
go back to reference Luo J, Fan FR, Jiang T, Wang Z, Tang W, Zhang C, Wang ZL (2015) Integration of micro-supercapacitors with triboelectric nanogenerators for a flexible self-charging power unit. Nano Res 8:3934–3943CrossRef Luo J, Fan FR, Jiang T, Wang Z, Tang W, Zhang C, Wang ZL (2015) Integration of micro-supercapacitors with triboelectric nanogenerators for a flexible self-charging power unit. Nano Res 8:3934–3943CrossRef
11.
go back to reference Maffucci A, Miano G (2014) Electrical properties of graphene for interconnect applications. Appl Sci 4:305–317CrossRef Maffucci A, Miano G (2014) Electrical properties of graphene for interconnect applications. Appl Sci 4:305–317CrossRef
12.
go back to reference Nagelli E, Naik R, Xue Y, Gao Y, Zhang M, Dai L (2013) Sensor arrays from multicomponent micropatterned nanoparticles and graphene. Nanotechnology 24(1–7):444010CrossRef Nagelli E, Naik R, Xue Y, Gao Y, Zhang M, Dai L (2013) Sensor arrays from multicomponent micropatterned nanoparticles and graphene. Nanotechnology 24(1–7):444010CrossRef
13.
go back to reference Peng Y, Lei J (2014) Fabrication, electrical characterization, and detection application of graphene-sheet-based electrical circuits. Nanoscale Res Lett 9(1–9):617CrossRef Peng Y, Lei J (2014) Fabrication, electrical characterization, and detection application of graphene-sheet-based electrical circuits. Nanoscale Res Lett 9(1–9):617CrossRef
14.
go back to reference Ren TL, Tian H, Xie D, Yang Y (2012) Flexible graphite-on-paper piezoresistive sensors. Sensors (Basel) 12:6685–6694CrossRef Ren TL, Tian H, Xie D, Yang Y (2012) Flexible graphite-on-paper piezoresistive sensors. Sensors (Basel) 12:6685–6694CrossRef
15.
go back to reference Smith AD, Vaziri S, Niklaus F, Fischer AC, Sterner M, Delin A, Lemme MC (2013) Pressure sensors based on suspended graphene membranes. Solid-State Electron 88:89–94CrossRef Smith AD, Vaziri S, Niklaus F, Fischer AC, Sterner M, Delin A, Lemme MC (2013) Pressure sensors based on suspended graphene membranes. Solid-State Electron 88:89–94CrossRef
16.
go back to reference Tao L, Wang D, Jiang S, Liu Y, Xie Q, Tian H, Ren T (2016) Fabrication techniques and applications of flexible graphene-based electronic devices. J Semicond 37(1–8):041001CrossRef Tao L, Wang D, Jiang S, Liu Y, Xie Q, Tian H, Ren T (2016) Fabrication techniques and applications of flexible graphene-based electronic devices. J Semicond 37(1–8):041001CrossRef
17.
go back to reference Wu HQ, Ling CY, Lu HM, Qian H (2013) Graphene applications in electronic and optoelectronic devices and circuits. Chin Phys B 22(1–10):098106CrossRef Wu HQ, Ling CY, Lu HM, Qian H (2013) Graphene applications in electronic and optoelectronic devices and circuits. Chin Phys B 22(1–10):098106CrossRef
18.
go back to reference Xue Y, Zhu L, Chen H, Qu J, Dai L (2015) Multiscale patterning of graphene oxide and reduced graphene oxide for flexible supercapacitors. Carbon 92:305–310CrossRef Xue Y, Zhu L, Chen H, Qu J, Dai L (2015) Multiscale patterning of graphene oxide and reduced graphene oxide for flexible supercapacitors. Carbon 92:305–310CrossRef
19.
go back to reference Yang X, Liu G, Rostami M, Balandin AA, Mohanram K (2011) Graphene ambipolar multiplier phase detector. IEEE Electron Dev Lett 32:1328–1330CrossRef Yang X, Liu G, Rostami M, Balandin AA, Mohanram K (2011) Graphene ambipolar multiplier phase detector. IEEE Electron Dev Lett 32:1328–1330CrossRef
20.
go back to reference Tao LQ, Tian H, Liu Y, Ju ZY, Pang Y, Chen YQ, Wang DY, Tian XG, Yan JC, Deng NQ, Yang Y, Ren TL (2017) An intelligent artificial throat with sound-sensing ability based on laser induced graphene. Nat Commun 8(1–8):14579CrossRef Tao LQ, Tian H, Liu Y, Ju ZY, Pang Y, Chen YQ, Wang DY, Tian XG, Yan JC, Deng NQ, Yang Y, Ren TL (2017) An intelligent artificial throat with sound-sensing ability based on laser induced graphene. Nat Commun 8(1–8):14579CrossRef
21.
go back to reference Ye RQ, Chyan Y, Zhang JB, Li YL, Han X, Kittrell C, Tour JM (2017) Laser-induced graphene formation on wood. Adv Mater 29(1–7):1702211CrossRef Ye RQ, Chyan Y, Zhang JB, Li YL, Han X, Kittrell C, Tour JM (2017) Laser-induced graphene formation on wood. Adv Mater 29(1–7):1702211CrossRef
22.
go back to reference Duy LX, Peng ZW, Li YL, Zhang JB, Ji YS, Tour JM (2018) Laser-induced graphene fibers. Carbon 126:472–479CrossRef Duy LX, Peng ZW, Li YL, Zhang JB, Ji YS, Tour JM (2018) Laser-induced graphene fibers. Carbon 126:472–479CrossRef
23.
go back to reference Singh SP, Li YL, Be’er A, Oren Y, Tour JM, Arnusch CJ (2017) Laser-induced graphene layers and electrodes prevents microbial fouling and exerts antimicrobial action. ACS Appl Mater Interf 9:18238–18247CrossRef Singh SP, Li YL, Be’er A, Oren Y, Tour JM, Arnusch CJ (2017) Laser-induced graphene layers and electrodes prevents microbial fouling and exerts antimicrobial action. ACS Appl Mater Interf 9:18238–18247CrossRef
24.
go back to reference Yao Y, Kats MA, Genevet P, Yu N, Song Y, Kong J, Capasso F (2013) Broad electrical tuning of graphene-loaded plasmonic antennas. Nano Lett 13:1257–1264CrossRef Yao Y, Kats MA, Genevet P, Yu N, Song Y, Kong J, Capasso F (2013) Broad electrical tuning of graphene-loaded plasmonic antennas. Nano Lett 13:1257–1264CrossRef
25.
go back to reference Zhao J, Zhang GY, Shi DX (2013) Review of graphene-based strain sensors. Chin Phys B 22(1–9):057701CrossRef Zhao J, Zhang GY, Shi DX (2013) Review of graphene-based strain sensors. Chin Phys B 22(1–9):057701CrossRef
26.
go back to reference Zhu SE, Krishna Ghatkesar M, Zhang C, Janssen GCAM (2013) Graphene based piezoresistive pressure sensor. Appl Phys Lett 102(1–3):161904CrossRef Zhu SE, Krishna Ghatkesar M, Zhang C, Janssen GCAM (2013) Graphene based piezoresistive pressure sensor. Appl Phys Lett 102(1–3):161904CrossRef
27.
go back to reference Zhou MJ, Ren LM, Wei ZJ, Zhao HB, Hu BD, Jia YH, Shi ZJ, Fu YY, Huang R, Zhang X (2013) Graphene-based inductors: fabrication and performance. ECS Trans 52:1027–1032CrossRef Zhou MJ, Ren LM, Wei ZJ, Zhao HB, Hu BD, Jia YH, Shi ZJ, Fu YY, Huang R, Zhang X (2013) Graphene-based inductors: fabrication and performance. ECS Trans 52:1027–1032CrossRef
28.
go back to reference Wang ZD, Zhang QP, Peng P, Tian ZZ, Ren LM, Zhang X, Huang R, Wen JC, Fu YY (2017) Q-factors of CVD monolayer graphene and graphite inductors. J Phys D Appl Phys 50(1–6):345103CrossRef Wang ZD, Zhang QP, Peng P, Tian ZZ, Ren LM, Zhang X, Huang R, Wen JC, Fu YY (2017) Q-factors of CVD monolayer graphene and graphite inductors. J Phys D Appl Phys 50(1–6):345103CrossRef
29.
go back to reference Tian J, Nagarkoti DS, Rajab KZ, Hao Y (2016) Graphene-based tunable non-foster circuit for VHF applications. AIP Adv 6(1–7):065202CrossRef Tian J, Nagarkoti DS, Rajab KZ, Hao Y (2016) Graphene-based tunable non-foster circuit for VHF applications. AIP Adv 6(1–7):065202CrossRef
30.
go back to reference Yogeesh MN, Parrish KN, Lee JH, Park S, Tao L, Akinwande D (2015) Towards the realization of graphene based flexible radio frequency receiver. Electronics 4(4):933–946CrossRef Yogeesh MN, Parrish KN, Lee JH, Park S, Tao L, Akinwande D (2015) Towards the realization of graphene based flexible radio frequency receiver. Electronics 4(4):933–946CrossRef
31.
go back to reference Ke QQ, Wang J (2016) Graphene-based materials for supercapacitor electrodes-a review. J Materiomics 2:37–54CrossRef Ke QQ, Wang J (2016) Graphene-based materials for supercapacitor electrodes-a review. J Materiomics 2:37–54CrossRef
32.
go back to reference Ajuria J, Arnaiz M, Botas C, Carriazo D, Mysyk R, Rojo T, Talyzin AV, Goikolea E (2017) Graphene-based lithium ion capacitor with high gravimetric energy and power densities. J Power Sources 363:422–427CrossRef Ajuria J, Arnaiz M, Botas C, Carriazo D, Mysyk R, Rojo T, Talyzin AV, Goikolea E (2017) Graphene-based lithium ion capacitor with high gravimetric energy and power densities. J Power Sources 363:422–427CrossRef
33.
go back to reference Kwak H, Kim S, Kim J (2004) Nonlinear dynamic analysis of RC frames using cyclic moment-curvature relation. Struct Eng Mech 17:357–378CrossRef Kwak H, Kim S, Kim J (2004) Nonlinear dynamic analysis of RC frames using cyclic moment-curvature relation. Struct Eng Mech 17:357–378CrossRef
34.
go back to reference Ortega R, Shi BE (2014) A note on passivity of nonlinear RL and RC circuit. IFAC Proc 35:31–35CrossRef Ortega R, Shi BE (2014) A note on passivity of nonlinear RL and RC circuit. IFAC Proc 35:31–35CrossRef
Metadata
Title
Cost-effective fabrication and high-frequency response of non-ideal RC application based on 3D porous laser-induced graphene
Authors
Jianxiong Zhu
Xiaoyu Guo
Hui Wang
Weixing Song
Publication date
04-06-2018
Publisher
Springer US
Published in
Journal of Materials Science / Issue 17/2018
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2514-y

Other articles of this Issue 17/2018

Journal of Materials Science 17/2018 Go to the issue

Premium Partners