Skip to main content
Top

09-08-2024

Coupled CA-FE Simulation for Dynamic Recrystallization Microstructure Evolution of AZ61 Magnesium Alloy

Authors: Yingjie Chen, Quanan Li, Xiaoya Chen, Jinfeng Tan, Huanju He

Published in: Metals and Materials International

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The dynamic recrystallization (DRX) behavior during the thermal deformation process of AZ61 magnesium alloy was systematically studied using a combined finite element (FE) and cellular automaton (CA) model. Isothermal compression experiments on AZ61 magnesium alloy were conducted using a Gleeble-1500 thermal simulator at temperatures ranging from 300 to 450 ℃ and strain rates from 0.003 to 1 s−1, obtaining true stress–strain curves under various deformation conditions. Based on the obtained experimental data, a high-precision physical constitutive model for AZ61 alloy was established, along with a DRX kinetics model and a recrystallization critical model. At the same time, the grain size model was established by measuring the microstructure of the alloy. In addition, the parameters of the CA model were found, and the dislocation density model for CA simulation was established on this basis. Simulation results indicated that the dynamic recrystallization behavior is influenced by deformation temperature, strain rate, and strain. The predicted DRX volume fraction and average grain size matched well with experimental results, with a maximum error of less than 8%, demonstrating the high accuracy of the established model. This validated the effectiveness and predictive prospect of the CA-FE coupled method, this method provides a powerful tool and theoretical guidance for studying the DRX microstructure evolution of AZ61 magnesium alloy during hot deformation.

Graphical Abstract

The model and simulation results required for DRX simulation during hot deformation of AZ61 magnesium alloy

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference H. Yang, X. Wang, P. Ni et al., Construction of high strain rate loading constitutive model and failure model and prediction of forming limit for LA103Z magnesium alloy. Met. Mater. Int. 28(8), 1938–1947 (2022)CrossRef H. Yang, X. Wang, P. Ni et al., Construction of high strain rate loading constitutive model and failure model and prediction of forming limit for LA103Z magnesium alloy. Met. Mater. Int. 28(8), 1938–1947 (2022)CrossRef
2.
go back to reference S. Samiei, G. Dini, M. Ebrahimian-Hosseinabadi, Correlation between microstructure, mechanical properties, and corrosion characteristics of AZ31 Mg alloy processed by accumulative roll bonding process. Met. Mater. Int. 29(1), 192–203 (2023)CrossRef S. Samiei, G. Dini, M. Ebrahimian-Hosseinabadi, Correlation between microstructure, mechanical properties, and corrosion characteristics of AZ31 Mg alloy processed by accumulative roll bonding process. Met. Mater. Int. 29(1), 192–203 (2023)CrossRef
4.
go back to reference J.E. Kim, Y.J. Kim, J.H. Bae et al., Tensile and high-cycle fatigue properties of die-cast SEN6 magnesium alloy. Met. Mater. Int. 29(12), 3511–3520 (2023)CrossRef J.E. Kim, Y.J. Kim, J.H. Bae et al., Tensile and high-cycle fatigue properties of die-cast SEN6 magnesium alloy. Met. Mater. Int. 29(12), 3511–3520 (2023)CrossRef
5.
go back to reference K. Liu, H. Wang, J. Li et al., A review on factors influencing solidification cracking of magnesium alloys during welding. Met. Mater. Int. 30, 1723–1742 (2024)CrossRef K. Liu, H. Wang, J. Li et al., A review on factors influencing solidification cracking of magnesium alloys during welding. Met. Mater. Int. 30, 1723–1742 (2024)CrossRef
6.
go back to reference B. Bagheri, M. Abbasi, A. Abdollahzadeh et al., Effect of second-phase particle size and presence of vibration on AZ91/SiC surface composite layer produced by FSP. Trans. Nonferrous Metal. Soc. China 30(4), 905–916 (2020)CrossRef B. Bagheri, M. Abbasi, A. Abdollahzadeh et al., Effect of second-phase particle size and presence of vibration on AZ91/SiC surface composite layer produced by FSP. Trans. Nonferrous Metal. Soc. China 30(4), 905–916 (2020)CrossRef
7.
go back to reference B. Bagheri, A. Abdollahzadeh, M. Abbasi et al., Effect of vibration on machining and mechanical properties of AZ91 alloy during FSP: modeling and experiments. Int. J. Mater. Form. 14(4), 623–640 (2021)CrossRef B. Bagheri, A. Abdollahzadeh, M. Abbasi et al., Effect of vibration on machining and mechanical properties of AZ91 alloy during FSP: modeling and experiments. Int. J. Mater. Form. 14(4), 623–640 (2021)CrossRef
8.
go back to reference A. Abdollahzadeh, B. Bagheri, M. Abbasi et al., Mechanical, wear and corrosion behaviors of AZ91/SiC composite layer fabricated by friction stir vibration processing. Surf. Topogr. Metrol. Prop. 9(3), 035038 (2021)CrossRef A. Abdollahzadeh, B. Bagheri, M. Abbasi et al., Mechanical, wear and corrosion behaviors of AZ91/SiC composite layer fabricated by friction stir vibration processing. Surf. Topogr. Metrol. Prop. 9(3), 035038 (2021)CrossRef
9.
go back to reference D. Wang, Q. Zhu, Z. Wei et al., Hot deformation behaviors of AZ91 magnesium alloy: constitutive equation, ANN-based prediction, processing map and microstructure evolution. J. Alloy. Compd. 908, 164580 (2022)CrossRef D. Wang, Q. Zhu, Z. Wei et al., Hot deformation behaviors of AZ91 magnesium alloy: constitutive equation, ANN-based prediction, processing map and microstructure evolution. J. Alloy. Compd. 908, 164580 (2022)CrossRef
10.
go back to reference A.D. Rollett, M.J. Luton, D.J. Srolovitz, Microstructural simulation of dynamic recrystallization. Acta Metall. Mater. 40(1), 43–55 (1992)CrossRef A.D. Rollett, M.J. Luton, D.J. Srolovitz, Microstructural simulation of dynamic recrystallization. Acta Metall. Mater. 40(1), 43–55 (1992)CrossRef
11.
go back to reference R.L. Goetz, V. Seetharaman, Modeling dynamic recrystallization using cellular automata. Scr. Mater. 38(3), 405–413 (1998)CrossRef R.L. Goetz, V. Seetharaman, Modeling dynamic recrystallization using cellular automata. Scr. Mater. 38(3), 405–413 (1998)CrossRef
12.
go back to reference T. Takaki, T. Hirouchi, Y. Hisakuni et al., Multi-phase-field model to simulate microstructure evolutions during dynamic recrystallization. Mater. Trans. 49(11), 2559–2565 (2008)CrossRef T. Takaki, T. Hirouchi, Y. Hisakuni et al., Multi-phase-field model to simulate microstructure evolutions during dynamic recrystallization. Mater. Trans. 49(11), 2559–2565 (2008)CrossRef
13.
go back to reference M. Abbasi, B. Bagheri, F. Sharifi, Simulation and experimental study of dynamic recrystallization process during friction stir vibration welding of magnesium alloys. Trans. Nonferrous Metal. Soc. China 31(9), 2626–2650 (2021)CrossRef M. Abbasi, B. Bagheri, F. Sharifi, Simulation and experimental study of dynamic recrystallization process during friction stir vibration welding of magnesium alloys. Trans. Nonferrous Metal. Soc. China 31(9), 2626–2650 (2021)CrossRef
14.
go back to reference Y.-Y. He, S.-W. Bai, G. Fang, Coupled CA-FE simulation for dynamic recrystallization of magnesium alloy during hot extrusion. J. Magnes. Alloy. 10(3), 769–785 (2022)CrossRef Y.-Y. He, S.-W. Bai, G. Fang, Coupled CA-FE simulation for dynamic recrystallization of magnesium alloy during hot extrusion. J. Magnes. Alloy. 10(3), 769–785 (2022)CrossRef
15.
go back to reference X. Duan, M. Wang, X. Che et al., A new cellular automata model for hot deformation behavior of AZ80A magnesium alloy considering topological technique [J]. Mater. Today Commun. 37, 106936 (2023)CrossRef X. Duan, M. Wang, X. Che et al., A new cellular automata model for hot deformation behavior of AZ80A magnesium alloy considering topological technique [J]. Mater. Today Commun. 37, 106936 (2023)CrossRef
16.
go back to reference G. Shen, B. Hu, C. Zheng et al., Coupled simulation of ferrite recrystallization in a dual-phase steel considering deformation heterogeneity at mesoscale. Comput. Mater. Sci. 149, 191–201 (2018)CrossRef G. Shen, B. Hu, C. Zheng et al., Coupled simulation of ferrite recrystallization in a dual-phase steel considering deformation heterogeneity at mesoscale. Comput. Mater. Sci. 149, 191–201 (2018)CrossRef
17.
go back to reference A. Asgharzadeh, S.A. Nazari Tiji, T. Park et al., Prediction of softening kinetics and recrystallization texture in non-isothermally annealed bulged tubes using CPFEM and CA models. Mater. Sci. Eng. A 832, 142308 (2022)CrossRef A. Asgharzadeh, S.A. Nazari Tiji, T. Park et al., Prediction of softening kinetics and recrystallization texture in non-isothermally annealed bulged tubes using CPFEM and CA models. Mater. Sci. Eng. A 832, 142308 (2022)CrossRef
18.
go back to reference M. Ghorbani, M. Boley, P.N.H. Nakashima et al., A machine learning approach for accelerated design of magnesium alloys. Part a: alloy data and property space. J. Magnes. Alloy. 11(10), 3620–3633 (2023)CrossRef M. Ghorbani, M. Boley, P.N.H. Nakashima et al., A machine learning approach for accelerated design of magnesium alloys. Part a: alloy data and property space. J. Magnes. Alloy. 11(10), 3620–3633 (2023)CrossRef
19.
go back to reference C.M. Sellars, W.J.M. Tegart, Hot Workability. Int. Metall. Rev. 17(1), 1–24 (1972)CrossRef C.M. Sellars, W.J.M. Tegart, Hot Workability. Int. Metall. Rev. 17(1), 1–24 (1972)CrossRef
20.
go back to reference C. Li, L. Huang, M. Zhao et al., Influence of hot deformation on dynamic recrystallization behavior of 300M steel: rules and modeling. Mater. Sci. Eng. A 797, 139925 (2020)CrossRef C. Li, L. Huang, M. Zhao et al., Influence of hot deformation on dynamic recrystallization behavior of 300M steel: rules and modeling. Mater. Sci. Eng. A 797, 139925 (2020)CrossRef
21.
go back to reference Z. Cai, F. Chen, F. Ma et al., Dynamic recrystallization behavior and hot workability of AZ41M magnesium alloy during hot deformation. J. Alloy. Compd. 670, 55–63 (2016)CrossRef Z. Cai, F. Chen, F. Ma et al., Dynamic recrystallization behavior and hot workability of AZ41M magnesium alloy during hot deformation. J. Alloy. Compd. 670, 55–63 (2016)CrossRef
22.
go back to reference X. Lin, H. Huang, X. Yuan et al., Study on high-temperature deformation mechanical behavior and dynamic recrystallization kinetics model of Ti-47.5Al-2.5V-1.0Cr-0.2Zr alloy. J. Alloy. Compd. 891, 162105 (2022)CrossRef X. Lin, H. Huang, X. Yuan et al., Study on high-temperature deformation mechanical behavior and dynamic recrystallization kinetics model of Ti-47.5Al-2.5V-1.0Cr-0.2Zr alloy. J. Alloy. Compd. 891, 162105 (2022)CrossRef
23.
go back to reference K.L. Wang, M.W. Fu, S.Q. Lu et al., Study of the dynamic recrystallization of Ti–6.5Al–3.5Mo–1.5Zr–0.3Si alloy in β-forging process via finite element method modeling and microstructure characterization. Mater. Des. 32(3), 1283–1291 (2011)CrossRef K.L. Wang, M.W. Fu, S.Q. Lu et al., Study of the dynamic recrystallization of Ti–6.5Al–3.5Mo–1.5Zr–0.3Si alloy in β-forging process via finite element method modeling and microstructure characterization. Mater. Des. 32(3), 1283–1291 (2011)CrossRef
24.
go back to reference H.Z. Li, H.J. Wang, Z. Li et al., Flow behavior and processing map of as-cast Mg–10Gd–4.8Y–2Zn–0.6Zr alloy. Mater. Sci. Eng. A 528(1), 154–160 (2010)CrossRef H.Z. Li, H.J. Wang, Z. Li et al., Flow behavior and processing map of as-cast Mg–10Gd–4.8Y–2Zn–0.6Zr alloy. Mater. Sci. Eng. A 528(1), 154–160 (2010)CrossRef
25.
go back to reference C.M. Sellars, J.A. Whiteman, Recrystallization and grain growth in hot rolling. Metal Sci. 13(3–4), 187–194 (1979)CrossRef C.M. Sellars, J.A. Whiteman, Recrystallization and grain growth in hot rolling. Metal Sci. 13(3–4), 187–194 (1979)CrossRef
26.
go back to reference B. Derby, The dependence of grain size on stress during dynamic recrystallisation. Acta Metall. Mater. 39(5), 955–962 (1991)CrossRef B. Derby, The dependence of grain size on stress during dynamic recrystallisation. Acta Metall. Mater. 39(5), 955–962 (1991)CrossRef
27.
go back to reference R. Ding, Z.X. Guo, Coupled quantitative simulation of microstructural evolution and plastic flow during dynamic recrystallization. Acta Mater. 49(16), 3163–3175 (2001)CrossRef R. Ding, Z.X. Guo, Coupled quantitative simulation of microstructural evolution and plastic flow during dynamic recrystallization. Acta Mater. 49(16), 3163–3175 (2001)CrossRef
28.
go back to reference F. Chen, K. Qi, Z. Cui et al., Modeling the dynamic recrystallization in austenitic stainless steel using cellular automaton method. Comput. Mater. Sci. 83, 331–340 (2014)CrossRef F. Chen, K. Qi, Z. Cui et al., Modeling the dynamic recrystallization in austenitic stainless steel using cellular automaton method. Comput. Mater. Sci. 83, 331–340 (2014)CrossRef
29.
go back to reference W. Roberts, B. Ahlblom, A nucleation criterion for dynamic recrystallization during hot working. Acta Metall. 26(5), 801–813 (1978)CrossRef W. Roberts, B. Ahlblom, A nucleation criterion for dynamic recrystallization during hot working. Acta Metall. 26(5), 801–813 (1978)CrossRef
30.
go back to reference K.L. Wang, M.W. Fu, J. Lu, FEM-based modeling of dynamic recrystallization of AISI 52100 steel using cellular automaton method. Key Eng. Mater. 447–448, 406–411 (2010)CrossRef K.L. Wang, M.W. Fu, J. Lu, FEM-based modeling of dynamic recrystallization of AISI 52100 steel using cellular automaton method. Key Eng. Mater. 447–448, 406–411 (2010)CrossRef
31.
go back to reference M.-S. Chen, W.-Q. Yuan, H.-B. Li et al., Modeling and simulation of dynamic recrystallization behaviors of magnesium alloy AZ31B using cellular automaton method. Comput. Mater. Sci. 136, 163–172 (2017)CrossRef M.-S. Chen, W.-Q. Yuan, H.-B. Li et al., Modeling and simulation of dynamic recrystallization behaviors of magnesium alloy AZ31B using cellular automaton method. Comput. Mater. Sci. 136, 163–172 (2017)CrossRef
32.
go back to reference Y.-X. Liu, Y.C. Lin, H.-B. Li et al., Study of dynamic recrystallization in a Ni-based superalloy by experiments and cellular automaton model. Mater. Sci. Eng. A 626, 432–440 (2015)CrossRef Y.-X. Liu, Y.C. Lin, H.-B. Li et al., Study of dynamic recrystallization in a Ni-based superalloy by experiments and cellular automaton model. Mater. Sci. Eng. A 626, 432–440 (2015)CrossRef
33.
go back to reference F. Chen, Z. Cui, J. Liu et al., Modeling and simulation on dynamic recrystallization of 30Cr2Ni4MoV rotor steel using the cellular automaton method. Model. Simul. Mater. Sci. Eng. 17(7), 075015 (2009)CrossRef F. Chen, Z. Cui, J. Liu et al., Modeling and simulation on dynamic recrystallization of 30Cr2Ni4MoV rotor steel using the cellular automaton method. Model. Simul. Mater. Sci. Eng. 17(7), 075015 (2009)CrossRef
34.
go back to reference A. Laasraoui, J.J. Jonas, Prediction of steel flow stresses at high temperatures and strain rates. Metall. Trans. A 22(7), 1545–1558 (1991)CrossRef A. Laasraoui, J.J. Jonas, Prediction of steel flow stresses at high temperatures and strain rates. Metall. Trans. A 22(7), 1545–1558 (1991)CrossRef
35.
go back to reference S. Gourdet, F. Montheillet, A model of continuous dynamic recrystallization. Acta Mater. 51(9), 2685–2699 (2003)CrossRef S. Gourdet, F. Montheillet, A model of continuous dynamic recrystallization. Acta Mater. 51(9), 2685–2699 (2003)CrossRef
36.
go back to reference F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena (Elsevier, Oxford, 2012) F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena (Elsevier, Oxford, 2012)
37.
go back to reference Y. Zhang, G. Quan, J. Zhao et al., Shift of dynamic recrystallization kinetics in thermal compression induced by prior cold deformation treatment at Ni80A superalloy. J. Mater. Res. Technol. 28, 627–642 (2024)CrossRef Y. Zhang, G. Quan, J. Zhao et al., Shift of dynamic recrystallization kinetics in thermal compression induced by prior cold deformation treatment at Ni80A superalloy. J. Mater. Res. Technol. 28, 627–642 (2024)CrossRef
38.
go back to reference H. Jiang, L. Yang, J. Dong et al., The recrystallization model and microstructure prediction of alloy 690 during hot deformation. Mater. Des. 104, 162–173 (2016)CrossRef H. Jiang, L. Yang, J. Dong et al., The recrystallization model and microstructure prediction of alloy 690 during hot deformation. Mater. Des. 104, 162–173 (2016)CrossRef
39.
go back to reference S. Xu, C. Zhu, S. Kamado et al., Dynamic recrystallization behavior of as-cast AZ91 magnesium alloy during hot compressive. J. Mater. Res. Technol. 18, 5116–5125 (2022)CrossRef S. Xu, C. Zhu, S. Kamado et al., Dynamic recrystallization behavior of as-cast AZ91 magnesium alloy during hot compressive. J. Mater. Res. Technol. 18, 5116–5125 (2022)CrossRef
40.
go back to reference Y. Pei, M. Yuan, E. Wei et al., Effect of strain rate on dynamic recrystallization mechanism of Mg-Gd-Y-Sm-Zr alloy during hot compression. J. Mater. Res. Technol. 25, 5038–5050 (2023)CrossRef Y. Pei, M. Yuan, E. Wei et al., Effect of strain rate on dynamic recrystallization mechanism of Mg-Gd-Y-Sm-Zr alloy during hot compression. J. Mater. Res. Technol. 25, 5038–5050 (2023)CrossRef
41.
go back to reference W. Yuan, S.K. Panigrahi, J.Q. Su et al., Influence of grain size and texture on Hall-Petch relationship for a magnesium alloy. Scr. Mater. 65(11), 994–997 (2011)CrossRef W. Yuan, S.K. Panigrahi, J.Q. Su et al., Influence of grain size and texture on Hall-Petch relationship for a magnesium alloy. Scr. Mater. 65(11), 994–997 (2011)CrossRef
Metadata
Title
Coupled CA-FE Simulation for Dynamic Recrystallization Microstructure Evolution of AZ61 Magnesium Alloy
Authors
Yingjie Chen
Quanan Li
Xiaoya Chen
Jinfeng Tan
Huanju He
Publication date
09-08-2024
Publisher
The Korean Institute of Metals and Materials
Published in
Metals and Materials International
Print ISSN: 1598-9623
Electronic ISSN: 2005-4149
DOI
https://doi.org/10.1007/s12540-024-01757-y

Premium Partners