Skip to main content
Top

2020 | OriginalPaper | Chapter

4. Coupling the Curvilinear Immersed Boundary Method with Rotation-Free Finite Elements for Simulating Fluid–Structure Interaction: Concepts and Applications

Authors : Anvar Gilmanov, Henryk Stolarski, Fotis Sotiropoulos

Published in: Immersed Boundary Method

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The sharp interface curvilinear immersed boundary (CURVIB) method coupled with a rotation-free finite element (FE) method for thin shells provides a powerful framework for simulating fluid–structure interaction (FSI) problems for geometrically complex, arbitrarily deformable structures. The CURVIB and FE solvers are coupled together on the flexible solid–fluid interfaces, which contain the structural nodal positions, displacements, velocities, and loads calculated at each time level and exchanged between the flow and structural solvers. Loose and strong coupling FSI schemes are employed, enhanced by the Aitken acceleration technique to ensure robust coupling and fast convergence, especially for low mass ratio problems. Large-eddy simulation (LES) of turbulent flow FSI problems employ the dynamic Smagorinsky subgrid scale model with a wall model for reconstructing velocity boundary conditions near the immersed boundaries. In this chapter, the CURVIB-FE FSI algorithm is reviewed and its capabilities are demonstrated via a series of examples involving thin flexible structures undergoing very large deformations. The inverted flag problem is employed to validate the method, and the problem of a tri-leaflet aortic valve in an anatomic aorta is employed to demonstrate its potential in complex cardiovascular flow applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Angelidis D, Chawdhary S, Sotiropoulos F (2016) Unstructured Cartesian refinement with sharp interface immersed boundary method for 3D unsteady incompressible flows. J Comput Phys 325:272–300MathSciNetMATHCrossRef Angelidis D, Chawdhary S, Sotiropoulos F (2016) Unstructured Cartesian refinement with sharp interface immersed boundary method for 3D unsteady incompressible flows. J Comput Phys 325:272–300MathSciNetMATHCrossRef
go back to reference Baek H, Karniadakis GE (2012) A convergence study of a new partitioned fluid–structure interaction algorithm based on fictitious mass and damping. J Comput Phys 231:629–652MathSciNetMATHCrossRef Baek H, Karniadakis GE (2012) A convergence study of a new partitioned fluid–structure interaction algorithm based on fictitious mass and damping. J Comput Phys 231:629–652MathSciNetMATHCrossRef
go back to reference Barker AT, Cai X (2010) Scalable parallel methods for monolithic coupling in fluid–structure interaction with application to blood flow modeling. J Comput Phys 229:642–659MathSciNetMATHCrossRef Barker AT, Cai X (2010) Scalable parallel methods for monolithic coupling in fluid–structure interaction with application to blood flow modeling. J Comput Phys 229:642–659MathSciNetMATHCrossRef
go back to reference Bazilevs Y, Hsu M-C, Scott MA (2012) Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines. Comput Methods Appl Mech Eng 249:28–41MathSciNetMATHCrossRef Bazilevs Y, Hsu M-C, Scott MA (2012) Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines. Comput Methods Appl Mech Eng 249:28–41MathSciNetMATHCrossRef
go back to reference Borazjani I (2013) Fluid–structure interaction, immersed boundary-finite element method simulations of bio-prosthetic heart valves. Comput Methods Appl Mech Eng 257:103–116MathSciNetMATHCrossRef Borazjani I (2013) Fluid–structure interaction, immersed boundary-finite element method simulations of bio-prosthetic heart valves. Comput Methods Appl Mech Eng 257:103–116MathSciNetMATHCrossRef
go back to reference Borazjani I, Ge L, Sotiropoulos F (2008) Curvilinear immersed boundary method for simulating fluid–structure interaction with complex 3d rigid bodies. J Comput Phys 227(16):7587–7620MathSciNetMATHCrossRef Borazjani I, Ge L, Sotiropoulos F (2008) Curvilinear immersed boundary method for simulating fluid–structure interaction with complex 3d rigid bodies. J Comput Phys 227(16):7587–7620MathSciNetMATHCrossRef
go back to reference Calderer A, Kang S, Sotiropoulos F (2014) Level set immersed boundary method for coupled simulation of air/water interaction with complex floating structures. J Comput Phys 277:201–227MathSciNetMATHCrossRef Calderer A, Kang S, Sotiropoulos F (2014) Level set immersed boundary method for coupled simulation of air/water interaction with complex floating structures. J Comput Phys 277:201–227MathSciNetMATHCrossRef
go back to reference Carmody CJ, Burriesci G, Howard IC, Patterson EA (2006) An approach to the simulation of fluid–structure interaction in the aortic valve. J Biomech 39:158–169CrossRef Carmody CJ, Burriesci G, Howard IC, Patterson EA (2006) An approach to the simulation of fluid–structure interaction in the aortic valve. J Biomech 39:158–169CrossRef
go back to reference Dettmer W, Períc D (2006) A computational framework for fluid–structure interaction: finite element formulation and applications. Comput Methods Appl Mech Eng 195(41):5754–5779 Dettmer W, Períc D (2006) A computational framework for fluid–structure interaction: finite element formulation and applications. Comput Methods Appl Mech Eng 195(41):5754–5779
go back to reference Donea J, Giuliani S, Halleux JP (1982) An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid–structure interactions. Comput Methods Appl Mech Eng 33:689–723MATHCrossRef Donea J, Giuliani S, Halleux JP (1982) An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid–structure interactions. Comput Methods Appl Mech Eng 33:689–723MATHCrossRef
go back to reference Farhat C, Lakshminarayan VK (2014) An ALE formulation of embedded boundary methods for tracking boundary layers in turbulent fluid–structure interaction problems. J Comput Phys 263:53–70MathSciNetMATHCrossRef Farhat C, Lakshminarayan VK (2014) An ALE formulation of embedded boundary methods for tracking boundary layers in turbulent fluid–structure interaction problems. J Comput Phys 263:53–70MathSciNetMATHCrossRef
go back to reference Felippa CA, Park KC, Farhat C (2001) Partitioned analysis of coupled mechanical systems. Comput Methods Appl Mech Eng 190(24–25):3247–3270MATHCrossRef Felippa CA, Park KC, Farhat C (2001) Partitioned analysis of coupled mechanical systems. Comput Methods Appl Mech Eng 190(24–25):3247–3270MATHCrossRef
go back to reference Fernandez MA, Gerbeau J-F, Grandmont C (2007) A projection semi-implicit scheme for the coupling of an elastic structure with an incompressible fluid. Int J Numer Methods Eng 69:794–821MathSciNetMATHCrossRef Fernandez MA, Gerbeau J-F, Grandmont C (2007) A projection semi-implicit scheme for the coupling of an elastic structure with an incompressible fluid. Int J Numer Methods Eng 69:794–821MathSciNetMATHCrossRef
go back to reference Gal E, Levy R (2006) Geometrically nonlinear analysis of shell structures using a flat triangular shell finite element. Arch. Comput. Methods Eng. 13:331–388MATHCrossRef Gal E, Levy R (2006) Geometrically nonlinear analysis of shell structures using a flat triangular shell finite element. Arch. Comput. Methods Eng. 13:331–388MATHCrossRef
go back to reference Ge L, Sotiropoulos F (2007) A numerical method for solving the 3 D unsteady incompressible Navier-Stokes equations in curvilinear domains with complex immersed boundaries. J Comput Phys 225:1782–1809MathSciNetMATHCrossRef Ge L, Sotiropoulos F (2007) A numerical method for solving the 3 D unsteady incompressible Navier-Stokes equations in curvilinear domains with complex immersed boundaries. J Comput Phys 225:1782–1809MathSciNetMATHCrossRef
go back to reference Ge L, Sotiropoulos F (2010) Direction and magnitude of blood flow shear stresses on the leaflets of aortic valves: is there a link with valve calcification? J Biomech Eng 132 Ge L, Sotiropoulos F (2010) Direction and magnitude of blood flow shear stresses on the leaflets of aortic valves: is there a link with valve calcification? J Biomech Eng 132
go back to reference Germano M, Piomelli U, Moin P, Cabot WH (1991) A dynamic subgrid-scale eddy viscosity model. Phys Fluids 3(7):1760–1765MATHCrossRef Germano M, Piomelli U, Moin P, Cabot WH (1991) A dynamic subgrid-scale eddy viscosity model. Phys Fluids 3(7):1760–1765MATHCrossRef
go back to reference Gilmanov A, Sotiropoulos F (2005) A hybrid Cartesian/immersed boundary method for simulating flows with 3D, geometrically complex, moving bodies. J Comput Phys 207(2):457MATHCrossRef Gilmanov A, Sotiropoulos F (2005) A hybrid Cartesian/immersed boundary method for simulating flows with 3D, geometrically complex, moving bodies. J Comput Phys 207(2):457MATHCrossRef
go back to reference Gilmanov A, Sotiropoulos F, Balaras E (2003) A general reconstruction algorithm for simulating flows with complex 3D immersed boundaries on Cartesian grids. J Comput Phys 191:660–669MATHCrossRef Gilmanov A, Sotiropoulos F, Balaras E (2003) A general reconstruction algorithm for simulating flows with complex 3D immersed boundaries on Cartesian grids. J Comput Phys 191:660–669MATHCrossRef
go back to reference Gilmanov A, Le Bao T, Sotiropoulos F (2015) A numerical approach for simulating fluid-structure interaction of flexible thin shells undergoing arbitrarily large deformations in complex domains. J Comput Phys 300:814–843MathSciNetMATHCrossRef Gilmanov A, Le Bao T, Sotiropoulos F (2015) A numerical approach for simulating fluid-structure interaction of flexible thin shells undergoing arbitrarily large deformations in complex domains. J Comput Phys 300:814–843MathSciNetMATHCrossRef
go back to reference Gilmanov A, Stolarski H, Sotiropoulos F (2016) Non-linear rotation-free shell finite-element models for aortic heart valves. J Biomech 50:56–62CrossRef Gilmanov A, Stolarski H, Sotiropoulos F (2016) Non-linear rotation-free shell finite-element models for aortic heart valves. J Biomech 50:56–62CrossRef
go back to reference Gilmanov A, Stolarski H, Sotiropoulos F (2018) Flow-structure interaction simulations of the aortic heart valve at physiologic conditions: the role of tissue constitutive model. J Biomech Eng 140:1003–1012CrossRef Gilmanov A, Stolarski H, Sotiropoulos F (2018) Flow-structure interaction simulations of the aortic heart valve at physiologic conditions: the role of tissue constitutive model. J Biomech Eng 140:1003–1012CrossRef
go back to reference Griffith BE, Luo X, McQueen DM, Peskin CS (2009) Simulating the fluid dynamics of natural and prosthetic heart valves using the immersed boundary method. Int J Appl Mech 1(01):137–177CrossRef Griffith BE, Luo X, McQueen DM, Peskin CS (2009) Simulating the fluid dynamics of natural and prosthetic heart valves using the immersed boundary method. Int J Appl Mech 1(01):137–177CrossRef
go back to reference Hirt CW, Amsden AA, Cook JL (1974) An arbitrary Lagrangian-Eulerian computing method for all flow speeds. J Comput Phys 14(3):227–253MATHCrossRef Hirt CW, Amsden AA, Cook JL (1974) An arbitrary Lagrangian-Eulerian computing method for all flow speeds. J Comput Phys 14(3):227–253MATHCrossRef
go back to reference Hunt JCR, Wray AA, Moin P (1988) Eddies, streams, and convergence zones in turbulent flows. In: Proceedings of the 1988 summer program, Stanford N.A.S.A. Centre for Turbulence Research, CTR-S88, vol 736, pp 193–208 Hunt JCR, Wray AA, Moin P (1988) Eddies, streams, and convergence zones in turbulent flows. In: Proceedings of the 1988 summer program, Stanford N.A.S.A. Centre for Turbulence Research, CTR-S88, vol 736, pp 193–208
go back to reference Kamensky D, Hsu MC, Schillinger D, Evans JA, Aggarwal A, Bazilevs Y, Sacks MS, Hughes TJR (2015) An immersogeometric variational framework for fluid–structure interaction: application to bio prosthetic heart valves. Comput Methods Appl Mech Eng 284:1005–1053MATHCrossRef Kamensky D, Hsu MC, Schillinger D, Evans JA, Aggarwal A, Bazilevs Y, Sacks MS, Hughes TJR (2015) An immersogeometric variational framework for fluid–structure interaction: application to bio prosthetic heart valves. Comput Methods Appl Mech Eng 284:1005–1053MATHCrossRef
go back to reference Kang S, Lightbody A, Hill C, Sotiropoulos F (2011) High-resolution numerical simulation of turbulence in natural water ways. Adv Water Resour 34:98–113CrossRef Kang S, Lightbody A, Hill C, Sotiropoulos F (2011) High-resolution numerical simulation of turbulence in natural water ways. Adv Water Resour 34:98–113CrossRef
go back to reference Kang S, Borazjani I, Colby J, Sotiropoulos F (2012) Numerical simulation of 3d flow past a real-life marine hydrokinetic turbine. Adv Water Resour 39:33–43CrossRef Kang S, Borazjani I, Colby J, Sotiropoulos F (2012) Numerical simulation of 3d flow past a real-life marine hydrokinetic turbine. Adv Water Resour 39:33–43CrossRef
go back to reference Kang S, Yang X, Sotiropoulos F (2014) On the onset of wake meandering for an axial flow turbine in a turbulent open channel flow. J Fluid Mech 744:376–403CrossRef Kang S, Yang X, Sotiropoulos F (2014) On the onset of wake meandering for an axial flow turbine in a turbulent open channel flow. J Fluid Mech 744:376–403CrossRef
go back to reference Khosronejad A, Sotiropoulos F (2014) Numerical simulation of sand waves in a turbulent open channel flow. J Fluid Mech 753:150–216CrossRef Khosronejad A, Sotiropoulos F (2014) Numerical simulation of sand waves in a turbulent open channel flow. J Fluid Mech 753:150–216CrossRef
go back to reference Kim D, Cossé J, Cerdeira CH, Gharib M (2013) Flapping dynamics of an inverted flag. J Fluid Mech 736 Kim D, Cossé J, Cerdeira CH, Gharib M (2013) Flapping dynamics of an inverted flag. J Fluid Mech 736
go back to reference Küttler U, Wall W (2008) Fixed-point fluid–structure interaction solvers with dynamic relaxation. Comput Mech 43:61–72MATHCrossRef Küttler U, Wall W (2008) Fixed-point fluid–structure interaction solvers with dynamic relaxation. Comput Mech 43:61–72MATHCrossRef
go back to reference Le TB, Sotiropoulos F (2013) Fluid–structure interaction of an aortic heart valve prosthesis driven by an animated anatomic left ventricle. J Comput Phys 244:41–62MathSciNetMATHCrossRef Le TB, Sotiropoulos F (2013) Fluid–structure interaction of an aortic heart valve prosthesis driven by an animated anatomic left ventricle. J Comput Phys 244:41–62MathSciNetMATHCrossRef
go back to reference Le DV, White J, Peraire J, Lim KM, Khoo BC (2009) An implicit immersed boundary method for three-dimensional fluid–membrane interactions. J Comput Phys 228(22):8427–8445MathSciNetMATHCrossRef Le DV, White J, Peraire J, Lim KM, Khoo BC (2009) An implicit immersed boundary method for three-dimensional fluid–membrane interactions. J Comput Phys 228(22):8427–8445MathSciNetMATHCrossRef
go back to reference Luo H, Mittal R, Zheng X, Bielamowicz SA, Walsh RJ, Hahn JK (2008) An immersed-boundary method for flow–structure interaction in biological systems with application to phonation. J Comput Phys 227:9303–9332MathSciNetMATHCrossRef Luo H, Mittal R, Zheng X, Bielamowicz SA, Walsh RJ, Hahn JK (2008) An immersed-boundary method for flow–structure interaction in biological systems with application to phonation. J Comput Phys 227:9303–9332MathSciNetMATHCrossRef
go back to reference Luo H, Yin B, Dai H, Doyle JF (2010) A 3d computational study of the flow–structure interaction in flapping flight. Technical Report. In: 48th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, 4–7 Jan 2010, Orlando, Florida Luo H, Yin B, Dai H, Doyle JF (2010) A 3d computational study of the flow–structure interaction in flapping flight. Technical Report. In: 48th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, 4–7 Jan 2010, Orlando, Florida
go back to reference Macosko CW (1994) Rheology: principles, measurements, and applications. Wiley VCH, New York Macosko CW (1994) Rheology: principles, measurements, and applications. Wiley VCH, New York
go back to reference May-Newman K, Yin F (1998) A constitutive law for mitral valve tissue. ASME J Biomech Eng 120(1):38–47CrossRef May-Newman K, Yin F (1998) A constitutive law for mitral valve tissue. ASME J Biomech Eng 120(1):38–47CrossRef
go back to reference New TH, Tsovolos D (2012) Vortex behaviour and velocity characteristics of jets issuing from hybrid inclined elliptic nozzles. Flow Turbul Combust 89(4):601–625CrossRef New TH, Tsovolos D (2012) Vortex behaviour and velocity characteristics of jets issuing from hybrid inclined elliptic nozzles. Flow Turbul Combust 89(4):601–625CrossRef
go back to reference Newmark N (1959) A method of computation for structural dynamics. J Eng Mech Div 85:67–94 Newmark N (1959) A method of computation for structural dynamics. J Eng Mech Div 85:67–94
go back to reference Sacks MS, Schoen FJ, Mayer JE Jr (2009) Bioengineering challenges for heart valve tissue engineering. Annu Rev Biomed Eng 11:289–313CrossRef Sacks MS, Schoen FJ, Mayer JE Jr (2009) Bioengineering challenges for heart valve tissue engineering. Annu Rev Biomed Eng 11:289–313CrossRef
go back to reference Smith IM, Griffith DV (2004) Programming the finite element method. Willey, New York Smith IM, Griffith DV (2004) Programming the finite element method. Willey, New York
go back to reference Sotiropoulos F, Yang X (2014) Immersed boundary methods for simulating fluid–structure interaction. Prog Aerosp Sci 65:1–21CrossRef Sotiropoulos F, Yang X (2014) Immersed boundary methods for simulating fluid–structure interaction. Prog Aerosp Sci 65:1–21CrossRef
go back to reference Stolarski H, Belytschko T, Lee S-H (1995) A review of shell finite elements and co-rotational theories. Comput. Mech. Adv. 2:125–212MathSciNetMATH Stolarski H, Belytschko T, Lee S-H (1995) A review of shell finite elements and co-rotational theories. Comput. Mech. Adv. 2:125–212MathSciNetMATH
go back to reference Stolarski H, Gilmanov A, Sotiropoulos F (2013) Non-linear rotation-free 3-node shell finite-element formulation. Int J Numer Methods Eng 95:740–770MATHCrossRef Stolarski H, Gilmanov A, Sotiropoulos F (2013) Non-linear rotation-free 3-node shell finite-element formulation. Int J Numer Methods Eng 95:740–770MATHCrossRef
go back to reference Tepole AB, Kabari H, Bletzinger K-U, Kuhl E (2015) Isogeometric Kirchhoff-Love shell formulations for biological membranes. Comput Methods Appl Mech Eng 293:328–347MathSciNetMATHCrossRef Tepole AB, Kabari H, Bletzinger K-U, Kuhl E (2015) Isogeometric Kirchhoff-Love shell formulations for biological membranes. Comput Methods Appl Mech Eng 293:328–347MathSciNetMATHCrossRef
go back to reference Tian FB, Dai H, Luo H, Doyle JF, Rousseau B (2014) Fluid–structure interaction involving large deformations: 3d simulations and applications to biological systems. J Comput Phys 258:451–469MathSciNetMATHCrossRef Tian FB, Dai H, Luo H, Doyle JF, Rousseau B (2014) Fluid–structure interaction involving large deformations: 3d simulations and applications to biological systems. J Comput Phys 258:451–469MathSciNetMATHCrossRef
go back to reference Timoshenko S, Woinowsky-Krieger S (1959) Theory of plates and shells. McGraw–Hill, New York Timoshenko S, Woinowsky-Krieger S (1959) Theory of plates and shells. McGraw–Hill, New York
go back to reference Vanella M, Rabenold P, Balaras E (2010) A direct-forcing embedded-boundary method with adaptive mesh refinement for fluid-structure interaction problems. J Comput Phys 229(18):6427–6449MathSciNetMATHCrossRef Vanella M, Rabenold P, Balaras E (2010) A direct-forcing embedded-boundary method with adaptive mesh refinement for fluid-structure interaction problems. J Comput Phys 229(18):6427–6449MathSciNetMATHCrossRef
go back to reference Wiens JK, Stockie JM (2015) An efficient parallel immersed boundary algorithm using a pseudo-compressible fluid solver. J Comput Phys 281:917–941MathSciNetMATHCrossRef Wiens JK, Stockie JM (2015) An efficient parallel immersed boundary algorithm using a pseudo-compressible fluid solver. J Comput Phys 281:917–941MathSciNetMATHCrossRef
go back to reference Zheng X, Xue Q, Mittal R, Beilamowicz S (2010) A coupled sharp-interface immersed boundary-finite element method for flow–structure interaction with application to human phonation. J Biomech Eng 132:111003CrossRef Zheng X, Xue Q, Mittal R, Beilamowicz S (2010) A coupled sharp-interface immersed boundary-finite element method for flow–structure interaction with application to human phonation. J Biomech Eng 132:111003CrossRef
go back to reference Zhu L, Peskin CS (2002) Simulation of a flapping flexible filament in a flowing soap film by the immersed boundary method. J Comput Phys 179(2):452–468MathSciNetMATHCrossRef Zhu L, Peskin CS (2002) Simulation of a flapping flexible filament in a flowing soap film by the immersed boundary method. J Comput Phys 179(2):452–468MathSciNetMATHCrossRef
Metadata
Title
Coupling the Curvilinear Immersed Boundary Method with Rotation-Free Finite Elements for Simulating Fluid–Structure Interaction: Concepts and Applications
Authors
Anvar Gilmanov
Henryk Stolarski
Fotis Sotiropoulos
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-3940-4_4

Premium Partners