Skip to main content
Top
Published in: Journal of Polymer Research 2/2019

01-02-2019 | ORIGINAL PAPER

Crack growth resistance in rubber composites with controlled Interface bonding and interphase content

Authors: Mohammad Alimardani, Mehdi Razzaghi-Kashani, Thomas Koch

Published in: Journal of Polymer Research | Issue 2/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The distinction between abrasion resistance of carbon black and silica reinforced tire tread compounds has drawn attention to the indispensable role of interfacial phenomena on crack growth resistance of rubber composites. Attempts to determine the dependence of interface bonding (from covalent to non-covalent) on crack growth resistance of rubber composites are insufficient without knowledge of the contributions resulting from the interphase (i.e. the volume of rubber chains with restricted mobility). For highly-filled rubbers, the interphase is mainly formed by strong filler-filler interaction and entrapment of rubbers among filler aggregates. Working on the silane-treated silica reinforced rubber, here the alkyl length and the grafting density of silane are systematically controlled to fabricate filler systems with desired surface energy, specified filler-filler interaction and definite trapped-rubber/interphase content. At equal surface energy of fillers one could then change the interface bonding from covalent to non-covalent and study the role of interface on the crack growth resistance. After analyzing the tearing energy of the resulting composites, it was found that the primary factor affecting the fracture strength of highly filled rubbers is the content of the trapped-rubber. The type of interface bonding shared a secondary contribution to the tearing energy values. A slip-stick fracture pattern was observed for the composite with the covalently-bonded interface. A mechanistic model ascribing the relation between the tearing energy and the controlling parameters of the fracture was also proposed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Alimardani M, Razzaghi-Kashani M, Ghoreishy MHR (2017) Prediction of mechanical and fracture properties of rubber composites by microstructural modeling of polymer-filler interfacial effects. Mater Des 115:348–354CrossRef Alimardani M, Razzaghi-Kashani M, Ghoreishy MHR (2017) Prediction of mechanical and fracture properties of rubber composites by microstructural modeling of polymer-filler interfacial effects. Mater Des 115:348–354CrossRef
2.
go back to reference Rooj S, Das A, Morozov IA, Stöckelhuber KW, Stocek R, Heinrich G (2013) Influence of “expanded clay” on the microstructure and fatigue crack growth behavior of carbon black filled NR composites. Compos Sci Technol 76:61–68CrossRef Rooj S, Das A, Morozov IA, Stöckelhuber KW, Stocek R, Heinrich G (2013) Influence of “expanded clay” on the microstructure and fatigue crack growth behavior of carbon black filled NR composites. Compos Sci Technol 76:61–68CrossRef
3.
go back to reference Leelachai K, Kongkachuichay P, Dittanet P (2017) Toughening of epoxy hybrid nanocomposites modified with silica nanoparticles and epoxidized natural rubber. J Polym Res 24(3):41CrossRef Leelachai K, Kongkachuichay P, Dittanet P (2017) Toughening of epoxy hybrid nanocomposites modified with silica nanoparticles and epoxidized natural rubber. J Polym Res 24(3):41CrossRef
4.
go back to reference Lauke B (2017) Fracture toughness modelling of polymers filled with inhomogeneously distributed rigid spherical particles. Express Polym Lett 11(7):545–554CrossRef Lauke B (2017) Fracture toughness modelling of polymers filled with inhomogeneously distributed rigid spherical particles. Express Polym Lett 11(7):545–554CrossRef
5.
go back to reference Menon A, Pillai C, Jin W, Nah C (2005) Fatigue resistance of silica-filled natural rubber vulcanizates: comparative study of the effect of phosphorylated cardanol prepolymer and a silane coupling agent. Polym Int 54(4):629–635CrossRef Menon A, Pillai C, Jin W, Nah C (2005) Fatigue resistance of silica-filled natural rubber vulcanizates: comparative study of the effect of phosphorylated cardanol prepolymer and a silane coupling agent. Polym Int 54(4):629–635CrossRef
6.
go back to reference Hamed GR (1991) Energy dissipation and the fracture of rubber vulcanizates. Rubber Chem Technol 64(3):493–500CrossRef Hamed GR (1991) Energy dissipation and the fracture of rubber vulcanizates. Rubber Chem Technol 64(3):493–500CrossRef
7.
go back to reference Dierkes WK, Reuvekamp LA, Ten Brinke AJ, Noordermeer JW (2004) In: Kash L. Mittal (ed) Silanes and Other Coupling Agents. VSP, London Dierkes WK, Reuvekamp LA, Ten Brinke AJ, Noordermeer JW (2004) In: Kash L. Mittal (ed) Silanes and Other Coupling Agents. VSP, London
8.
go back to reference Ten Brinke J, Debnath S, Reuvekamp LA, Noordermeer JW (2003) Mechanistic aspects of the role of coupling agents in silica–rubber composites. Compos Sci Technol 63(8):1165–1174CrossRef Ten Brinke J, Debnath S, Reuvekamp LA, Noordermeer JW (2003) Mechanistic aspects of the role of coupling agents in silica–rubber composites. Compos Sci Technol 63(8):1165–1174CrossRef
9.
go back to reference Suzuki N, Ito M, Yatsuyanagi F (2005) Effects of rubber/filler interactions on deformation behavior of silica filled SBR systems. Polymer 46(1):193–201CrossRef Suzuki N, Ito M, Yatsuyanagi F (2005) Effects of rubber/filler interactions on deformation behavior of silica filled SBR systems. Polymer 46(1):193–201CrossRef
10.
go back to reference Suntako R (2017) The rubber damper reinforced by modified silica fume (mSF) as an alternative reinforcing filler in rubber industry. J Polym Res 24(8):131CrossRef Suntako R (2017) The rubber damper reinforced by modified silica fume (mSF) as an alternative reinforcing filler in rubber industry. J Polym Res 24(8):131CrossRef
11.
go back to reference Liu J, Wang S, Tang Z, Huang J, Guo B, Huang G (2016) Bioinspired engineering of two different types of sacrificial bonds into chemically cross-linked cis-1,4-polyisoprene toward a high-performance elastomer. Macromolecules 49(22):8593–8604CrossRef Liu J, Wang S, Tang Z, Huang J, Guo B, Huang G (2016) Bioinspired engineering of two different types of sacrificial bonds into chemically cross-linked cis-1,4-polyisoprene toward a high-performance elastomer. Macromolecules 49(22):8593–8604CrossRef
12.
go back to reference Jancar J, Douglas J, Starr FW, Kumar S, Cassagnau P, Lesser A, Sternstein SS, Buehler M (2010) Current issues in research on structure–property relationships in polymer nanocomposites. Polymer 51(15):3321–3343CrossRef Jancar J, Douglas J, Starr FW, Kumar S, Cassagnau P, Lesser A, Sternstein SS, Buehler M (2010) Current issues in research on structure–property relationships in polymer nanocomposites. Polymer 51(15):3321–3343CrossRef
13.
go back to reference Kalfus J, Jancar J (2008) Reinforcing mechanisms in amorphous polymer nano-composites. Compos Sci Technol 68(15):3444–3447CrossRef Kalfus J, Jancar J (2008) Reinforcing mechanisms in amorphous polymer nano-composites. Compos Sci Technol 68(15):3444–3447CrossRef
14.
go back to reference Kalfus J, Jancar J (2007) Relaxation processes in PVAc-HA nanocomposites. J Polym Sci B Polym Phys 45(11):1380–1388CrossRef Kalfus J, Jancar J (2007) Relaxation processes in PVAc-HA nanocomposites. J Polym Sci B Polym Phys 45(11):1380–1388CrossRef
15.
go back to reference Leblanc JL (2002) Rubber–filler interactions and rheological properties in filled compounds. Prog Polym Sci 27(4):627–687CrossRef Leblanc JL (2002) Rubber–filler interactions and rheological properties in filled compounds. Prog Polym Sci 27(4):627–687CrossRef
16.
go back to reference Meera A, Said S, Grohens Y, Thomas S (2009) Nonlinear viscoelastic behavior of silica-filled natural rubber nanocomposites. J Phys Chem C 113(42):17997–18002CrossRef Meera A, Said S, Grohens Y, Thomas S (2009) Nonlinear viscoelastic behavior of silica-filled natural rubber nanocomposites. J Phys Chem C 113(42):17997–18002CrossRef
17.
go back to reference Wang H, Zhou H, Peng R, Mishnaevsky L (2011) Nanoreinforced polymer composites: 3D FEM modeling with effective interface concept. Compos Sci Technol 71(7):980–988CrossRef Wang H, Zhou H, Peng R, Mishnaevsky L (2011) Nanoreinforced polymer composites: 3D FEM modeling with effective interface concept. Compos Sci Technol 71(7):980–988CrossRef
18.
go back to reference Alimardani M, Razzaghi-Kashani M, Karimi R, Mahtabani A (2016) Contribution of mechanical engagement and energetic interaction in reinforcement of SBR-Silane-treated silica composites. Rubber Chem Technol 89(2):292–305CrossRef Alimardani M, Razzaghi-Kashani M, Karimi R, Mahtabani A (2016) Contribution of mechanical engagement and energetic interaction in reinforcement of SBR-Silane-treated silica composites. Rubber Chem Technol 89(2):292–305CrossRef
19.
go back to reference Mahtabani A, Alimardani M, Razzaghi-Kashani M (2017) Further evidence of filler–filler mechanical engagement in rubber compounds filled with silica treated by long-chain silane. Rubber Chem Technol 90(3):508–520CrossRef Mahtabani A, Alimardani M, Razzaghi-Kashani M (2017) Further evidence of filler–filler mechanical engagement in rubber compounds filled with silica treated by long-chain silane. Rubber Chem Technol 90(3):508–520CrossRef
20.
go back to reference Hamed G, Hiza S (2010) Trouser tearing of a model natural rubber Tire Belt Vulcanizate. Part 1: effect of rate of tearing. Rubber Chem Technol 83(2):199–212CrossRef Hamed G, Hiza S (2010) Trouser tearing of a model natural rubber Tire Belt Vulcanizate. Part 1: effect of rate of tearing. Rubber Chem Technol 83(2):199–212CrossRef
21.
go back to reference Qazvini NT, Mohammadi N, Jalali A, Varasteh A, Bagheri R (2002) The fracture behavior of rubbery vulcanizates: I. Single component versus blend systems. Rubber Chem Technol 73(2):78–85 Qazvini NT, Mohammadi N, Jalali A, Varasteh A, Bagheri R (2002) The fracture behavior of rubbery vulcanizates: I. Single component versus blend systems. Rubber Chem Technol 73(2):78–85
22.
go back to reference Stacer R, Yanyo L, Kelley F (1985) Observations on the tearing of elastomers. Rubber Chem Technol 58(2):421–435CrossRef Stacer R, Yanyo L, Kelley F (1985) Observations on the tearing of elastomers. Rubber Chem Technol 58(2):421–435CrossRef
23.
go back to reference Tsunoda K, Busfield J, Davies C, Thomas A (2000) Effect of materials variables on the tear behaviour of a non-crystallising elastomer. J Mater Sci 35(20):5187–5198CrossRef Tsunoda K, Busfield J, Davies C, Thomas A (2000) Effect of materials variables on the tear behaviour of a non-crystallising elastomer. J Mater Sci 35(20):5187–5198CrossRef
24.
go back to reference Nah C, Ryu HJ, Han SH, Rhee JM, Lee MH (2001) Fracture behaviour of acrylonitrile–butadiene rubber/clay nanocomposite. Polym Int 50(11):1265–1268CrossRef Nah C, Ryu HJ, Han SH, Rhee JM, Lee MH (2001) Fracture behaviour of acrylonitrile–butadiene rubber/clay nanocomposite. Polym Int 50(11):1265–1268CrossRef
25.
go back to reference Liu Y, Li L, Wang Q, Zhang X (2011) Fracture properties of natural rubber filled with hybrid carbon black/nanoclay. J Polym Res 18(5):859–867CrossRef Liu Y, Li L, Wang Q, Zhang X (2011) Fracture properties of natural rubber filled with hybrid carbon black/nanoclay. J Polym Res 18(5):859–867CrossRef
26.
go back to reference Ahagon A, Gent A (1975) Threshold fracture energies for elastomers. J Polym Sci B Polym Phys 13(10):1903–1911CrossRef Ahagon A, Gent A (1975) Threshold fracture energies for elastomers. J Polym Sci B Polym Phys 13(10):1903–1911CrossRef
27.
go back to reference Chang RJ, Gent A (1981) Effect of interfacial bonding on the strength of adhesion of elastomers. I. Self-adhesion. J Polym Sci B Polym Phys 19(10):1619–1633CrossRef Chang RJ, Gent A (1981) Effect of interfacial bonding on the strength of adhesion of elastomers. I. Self-adhesion. J Polym Sci B Polym Phys 19(10):1619–1633CrossRef
28.
go back to reference Andrews E, Kinloch A (1974) Mechanics of elastomeric adhesion. J Polym Sci 46(1):1–14 Andrews E, Kinloch A (1974) Mechanics of elastomeric adhesion. J Polym Sci 46(1):1–14
30.
go back to reference Hosseini SM, Razzaghi-Kashani M (2014) Vulcanization kinetics of nano-silica filled styrene butadiene rubber. Polymer 55(24):6426–6434CrossRef Hosseini SM, Razzaghi-Kashani M (2014) Vulcanization kinetics of nano-silica filled styrene butadiene rubber. Polymer 55(24):6426–6434CrossRef
Metadata
Title
Crack growth resistance in rubber composites with controlled Interface bonding and interphase content
Authors
Mohammad Alimardani
Mehdi Razzaghi-Kashani
Thomas Koch
Publication date
01-02-2019
Publisher
Springer Netherlands
Published in
Journal of Polymer Research / Issue 2/2019
Print ISSN: 1022-9760
Electronic ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-019-1709-5

Other articles of this Issue 2/2019

Journal of Polymer Research 2/2019 Go to the issue

Premium Partners