Skip to main content
Top
Published in: Acta Mechanica 7/2020

27-05-2020 | Original Paper

Cracked elastic layer with surface elasticity under antiplane shear loading

Authors: Ying Yang, Zhen-Liang Hu, Xian-Fang Li

Published in: Acta Mechanica | Issue 7/2020

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A mode-III crack embedded in a homogeneous isotropic elastic layer of nanoscale finite thickness is studied in this article. The classical elasticity incorporating surface elasticity is employed to reduce a nonclassical mixed boundary value problem, where the layer interior obeys the traditional constitutive relation and the surfaces of the layer and the crack are dominated by the surface constitutive relation. Using the Fourier transform, we convert the problem to a hypersingular integro-differential equation for the out-of-plane displacement on the crack faces. By expanding the out-of-plane displacement as series of Chebyshev polynomials, the Galerkin method is invoked to reduce the singular integro-differential equation with Cauchy kernel to a set of algebraic linear equations for the unknown coefficients. An approximate solution is determined, and the influences of surface elasticity on the elastic field and stress intensity factor are examined and displayed graphically. It is shown that surface elasticity decreases the bulk stress and its intensity factor near the crack tips for positive surface shear modulus and gives rise to an opposite trend for a negative surface shear modulus.
Literature
1.
go back to reference Zhang, H.: Ultrathin two-dimensional nanomaterials. ACS Nano 9(10), 9451–9469 (2015)CrossRef Zhang, H.: Ultrathin two-dimensional nanomaterials. ACS Nano 9(10), 9451–9469 (2015)CrossRef
2.
go back to reference Yang, G., Zhu, C., Du, D., Zhu, J., Lin, Y.: Graphene-like two-dimensional layered nanomaterials: applications in biosensors and nanomedicine. Nanoscale 7, 14217–14231 (2015)CrossRef Yang, G., Zhu, C., Du, D., Zhu, J., Lin, Y.: Graphene-like two-dimensional layered nanomaterials: applications in biosensors and nanomedicine. Nanoscale 7, 14217–14231 (2015)CrossRef
3.
go back to reference Poncharal, P., Wang, Z.L., Ugarte, D., de Heer, W.A.: Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283(5407), 1513–1516 (1999)CrossRef Poncharal, P., Wang, Z.L., Ugarte, D., de Heer, W.A.: Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283(5407), 1513–1516 (1999)CrossRef
4.
go back to reference Miller, R.E., Shenoy, V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11(3), 139–147 (2000)CrossRef Miller, R.E., Shenoy, V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11(3), 139–147 (2000)CrossRef
5.
go back to reference Dingreville, R., Qu, J., Cherkaoui, M.: Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films. J. Mech. Phys. Solids 53(8), 1827–1854 (2005)MathSciNetMATHCrossRef Dingreville, R., Qu, J., Cherkaoui, M.: Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films. J. Mech. Phys. Solids 53(8), 1827–1854 (2005)MathSciNetMATHCrossRef
6.
7.
go back to reference Cammarata, R.C.: Surface and interface stress effects in thin films. Prog. Surf. Sci. 46(1), 1–38 (1994)CrossRef Cammarata, R.C.: Surface and interface stress effects in thin films. Prog. Surf. Sci. 46(1), 1–38 (1994)CrossRef
8.
go back to reference Ru, C.Q.: Simple geometrical explanation of Gurtin–Murdoch model of surface elasticity with clarification of its related versions. Sci. China A 53(3), 536–544 (2010)MathSciNet Ru, C.Q.: Simple geometrical explanation of Gurtin–Murdoch model of surface elasticity with clarification of its related versions. Sci. China A 53(3), 536–544 (2010)MathSciNet
9.
go back to reference Wang, J., Huang, Z., Duan, H., Yu, S., Feng, X., Wang, G., Zhang, W., Wang, T.: Surface stress effect in mechanics of nanostructured materials. Acta Mech. Solida Sin. 24(1), 52–82 (2011)CrossRef Wang, J., Huang, Z., Duan, H., Yu, S., Feng, X., Wang, G., Zhang, W., Wang, T.: Surface stress effect in mechanics of nanostructured materials. Acta Mech. Solida Sin. 24(1), 52–82 (2011)CrossRef
10.
go back to reference Gurtin, M.E., Murdoch, A.I.: Surface stress in solids. Int. J. Solids Struct. 14(6), 431–440 (1978)MATHCrossRef Gurtin, M.E., Murdoch, A.I.: Surface stress in solids. Int. J. Solids Struct. 14(6), 431–440 (1978)MATHCrossRef
11.
go back to reference Wu, C.H.: The effect of surface stress on the configurational equilibrium of voids and cracks. J. Mech. Phys. Solids 47(12), 2469–2492 (1999)MathSciNetMATHCrossRef Wu, C.H.: The effect of surface stress on the configurational equilibrium of voids and cracks. J. Mech. Phys. Solids 47(12), 2469–2492 (1999)MathSciNetMATHCrossRef
12.
go back to reference Shodja, H.M., Ahmadzadeh-Bakhshayesh, H., Gutkin, M.Y.: Size-dependent interaction of an edge dislocation with an elliptical nano-inhomogeneity incorporating interface effects. Int. J. Solids Struct. 49(5), 759–770 (2012)CrossRef Shodja, H.M., Ahmadzadeh-Bakhshayesh, H., Gutkin, M.Y.: Size-dependent interaction of an edge dislocation with an elliptical nano-inhomogeneity incorporating interface effects. Int. J. Solids Struct. 49(5), 759–770 (2012)CrossRef
13.
14.
go back to reference Wang, G.F., Feng, X.-Q., Wang, T.H., Gao, W.: Surface effects on the near-tip stresses for mode-I and mode-III cracks. J. Appl. Mech. 75, 011001 (2008)CrossRef Wang, G.F., Feng, X.-Q., Wang, T.H., Gao, W.: Surface effects on the near-tip stresses for mode-I and mode-III cracks. J. Appl. Mech. 75, 011001 (2008)CrossRef
15.
go back to reference Kim, C., Schiavone, P., Ru, C.Q.: The effects of surface elasticity on an elastic solid with mode-III crack: complete solution. J. Appl. Mech. 77, 021011 (2010)CrossRef Kim, C., Schiavone, P., Ru, C.Q.: The effects of surface elasticity on an elastic solid with mode-III crack: complete solution. J. Appl. Mech. 77, 021011 (2010)CrossRef
16.
go back to reference Kim, C.I., Schiavone, P., Ru, C.-Q.: Analysis of plane-strain crack problems mode-I and mode-II in the presence of surface elasticity. J. Elast. 104(1–2), 397–420 (2011)MathSciNetMATHCrossRef Kim, C.I., Schiavone, P., Ru, C.-Q.: Analysis of plane-strain crack problems mode-I and mode-II in the presence of surface elasticity. J. Elast. 104(1–2), 397–420 (2011)MathSciNetMATHCrossRef
18.
go back to reference Kim, C.I., Ru, C.-Q., Schiavone, P.: A clarification of the role of crack-tip conditions in linear elasticity with surface effects. Math. Mech. Solids 18(1), 59–66 (2013)MathSciNetCrossRef Kim, C.I., Ru, C.-Q., Schiavone, P.: A clarification of the role of crack-tip conditions in linear elasticity with surface effects. Math. Mech. Solids 18(1), 59–66 (2013)MathSciNetCrossRef
19.
go back to reference Antipov, Y.A., Schiavone, P.: Integro-differential equation for a finite crack in a strip with surface effects. Q. J. Mech. Appl. Math. 64(1), 87–106 (2011)MathSciNetMATHCrossRef Antipov, Y.A., Schiavone, P.: Integro-differential equation for a finite crack in a strip with surface effects. Q. J. Mech. Appl. Math. 64(1), 87–106 (2011)MathSciNetMATHCrossRef
20.
go back to reference Hu, Z.-L., Li, X.-F.: A rigid line inclusion in an elastic film with surface elasticity. Z Angew. Math. Phys. (ZAMP) 69(4) (2018) Hu, Z.-L., Li, X.-F.: A rigid line inclusion in an elastic film with surface elasticity. Z Angew. Math. Phys. (ZAMP) 69(4) (2018)
21.
go back to reference Li, X.-F.: Effect of surface elasticity on stress intensity factors near mode-III crack tips. J. Mech. Mater. Struct. 14(1), 43–60 (2019)MathSciNetCrossRef Li, X.-F.: Effect of surface elasticity on stress intensity factors near mode-III crack tips. J. Mech. Mater. Struct. 14(1), 43–60 (2019)MathSciNetCrossRef
22.
go back to reference Yang, Y., Hu, Z.-L., Li, X.-F.: Nanoscale mode-III interface crack in a bimaterial with surface elasticity. Mech. Mater. 140, 103246 (2020)CrossRef Yang, Y., Hu, Z.-L., Li, X.-F.: Nanoscale mode-III interface crack in a bimaterial with surface elasticity. Mech. Mater. 140, 103246 (2020)CrossRef
23.
go back to reference Gorbushin, N., Eremeyev, V., Mishuris, G.: On stress singularity near the tip of a crack with surface stresses. Int. J. Eng. Sci. 146, 103183 (2020)MathSciNetMATHCrossRef Gorbushin, N., Eremeyev, V., Mishuris, G.: On stress singularity near the tip of a crack with surface stresses. Int. J. Eng. Sci. 146, 103183 (2020)MathSciNetMATHCrossRef
24.
go back to reference Shodja, H., Ghafarollahi, A., Enzevaee, C.: Surface/interface effect on the scattering of Love waves by a nano-size surface-breaking crack within an ultra-thin layer bonded to an elastic half-space. Int. J. Solids Struct. 108, 63–73 (2017)CrossRef Shodja, H., Ghafarollahi, A., Enzevaee, C.: Surface/interface effect on the scattering of Love waves by a nano-size surface-breaking crack within an ultra-thin layer bonded to an elastic half-space. Int. J. Solids Struct. 108, 63–73 (2017)CrossRef
25.
go back to reference Wang, H., Li, X.F., Tang, G.J., Shen, Z.B.: Effect of surface stress on stress intensity factors of a nanoscale crack via double cantilever beam model. J. Nanosci. Nanotechnol. 13(1), 477–482 (2013)CrossRef Wang, H., Li, X.F., Tang, G.J., Shen, Z.B.: Effect of surface stress on stress intensity factors of a nanoscale crack via double cantilever beam model. J. Nanosci. Nanotechnol. 13(1), 477–482 (2013)CrossRef
26.
go back to reference Yang, Y., Lee, K.Y., Li, X.F.: Surface effects on delamination of a thin film bonded to an elastic substrate. Int. J. Fract. 210(1–2), 81–94 (2018)CrossRef Yang, Y., Lee, K.Y., Li, X.F.: Surface effects on delamination of a thin film bonded to an elastic substrate. Int. J. Fract. 210(1–2), 81–94 (2018)CrossRef
27.
go back to reference Steigmann, D.J., Ogden, R.W.: A necessary condition for energy-minimizing plane deformations of elastic solids with intrinsic boundary elasticity. Math. Mech. Solids 2(1), 3–16 (1997)MathSciNetMATHCrossRef Steigmann, D.J., Ogden, R.W.: A necessary condition for energy-minimizing plane deformations of elastic solids with intrinsic boundary elasticity. Math. Mech. Solids 2(1), 3–16 (1997)MathSciNetMATHCrossRef
28.
go back to reference Steigmann, D.J., Ogden, R.W.: Plane deformations of elastic solids with intrinsic boundary elasticity. Proc. R. Soc. Lond. Ser. A 453(1959), 853–877 (1997)MathSciNetMATHCrossRef Steigmann, D.J., Ogden, R.W.: Plane deformations of elastic solids with intrinsic boundary elasticity. Proc. R. Soc. Lond. Ser. A 453(1959), 853–877 (1997)MathSciNetMATHCrossRef
29.
30.
go back to reference Sendova, T., Walton, J.: A new approach to the modeling and analysis of fracture through extension of continuum mechanics to the nanoscale. Math. Mech. Solids 15(3), 368–413 (2010)MathSciNetMATHCrossRef Sendova, T., Walton, J.: A new approach to the modeling and analysis of fracture through extension of continuum mechanics to the nanoscale. Math. Mech. Solids 15(3), 368–413 (2010)MathSciNetMATHCrossRef
31.
go back to reference Ferguson, L., Muddamallappa, M., Walton, J.: Numerical simulation of mode-III fracture incorporating interfacial mechanics. Int. J. Fract. 192(1), 47–56 (2015)CrossRef Ferguson, L., Muddamallappa, M., Walton, J.: Numerical simulation of mode-III fracture incorporating interfacial mechanics. Int. J. Fract. 192(1), 47–56 (2015)CrossRef
32.
go back to reference Sigaeva, T., Schiavone, P.: The effect of surface stress on an interface crack in linearly elastic materials. Math. Mech. Solids 21(6), 649–656 (2016)MathSciNetMATHCrossRef Sigaeva, T., Schiavone, P.: The effect of surface stress on an interface crack in linearly elastic materials. Math. Mech. Solids 21(6), 649–656 (2016)MathSciNetMATHCrossRef
33.
go back to reference Zemlyanova, A.: A straight mixed mode fracture with the Steigmann–Ogden boundary condition. Q. J. Mech. Appl. Math. 70(1), 65–86 (2017)MathSciNetMATHCrossRef Zemlyanova, A.: A straight mixed mode fracture with the Steigmann–Ogden boundary condition. Q. J. Mech. Appl. Math. 70(1), 65–86 (2017)MathSciNetMATHCrossRef
34.
go back to reference Kaya, A.C., Erdogan, F.: On the solution of integral equations with strongly singular kernels. Q. Appl. Math. 45(1), 105–122 (1987)MathSciNetMATHCrossRef Kaya, A.C., Erdogan, F.: On the solution of integral equations with strongly singular kernels. Q. Appl. Math. 45(1), 105–122 (1987)MathSciNetMATHCrossRef
35.
go back to reference Frankel, J.I.: A Galerkin solution to a regularized Cauchy singular integro-differential equation. Q. Appl. Math. 53(2), 245–258 (1995)MathSciNetMATHCrossRef Frankel, J.I.: A Galerkin solution to a regularized Cauchy singular integro-differential equation. Q. Appl. Math. 53(2), 245–258 (1995)MathSciNetMATHCrossRef
37.
38.
go back to reference Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards, Gaithersburg (1948)MATH Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards, Gaithersburg (1948)MATH
39.
go back to reference Sharma, P., Ganti, S.: Size-dependent Eshelby’s tensor for embedded nano-inclusions incorporating surface/interface energies. J. Appl. Mech. 71(4), 663–671 (2004)MATHCrossRef Sharma, P., Ganti, S.: Size-dependent Eshelby’s tensor for embedded nano-inclusions incorporating surface/interface energies. J. Appl. Mech. 71(4), 663–671 (2004)MATHCrossRef
40.
go back to reference Sharma, P., Wheeler, L.: Size-dependent elastic state of ellipsoidal nano-inclusions incorporating surface/interface tension. J. Appl. Mech. 74, 447–454 (2007)MathSciNetMATHCrossRef Sharma, P., Wheeler, L.: Size-dependent elastic state of ellipsoidal nano-inclusions incorporating surface/interface tension. J. Appl. Mech. 74, 447–454 (2007)MathSciNetMATHCrossRef
41.
go back to reference Li, X.-F., Tang, G.-J.: Antiplane interface crack between two bonded dissimilar piezoelectric layers. Eur. J. Mech. A. Solids 22(2), 231–242 (2003)MATHCrossRef Li, X.-F., Tang, G.-J.: Antiplane interface crack between two bonded dissimilar piezoelectric layers. Eur. J. Mech. A. Solids 22(2), 231–242 (2003)MATHCrossRef
42.
go back to reference Lu, P., Lee, H., Lu, C., O’Shea, S.: Surface stress effects on the resonance properties of cantilever sensors. Phys. Rev. B 72, 085405 (2005)CrossRef Lu, P., Lee, H., Lu, C., O’Shea, S.: Surface stress effects on the resonance properties of cantilever sensors. Phys. Rev. B 72, 085405 (2005)CrossRef
43.
go back to reference Lang, X.Y., Zhu, Y.F., Jiang, Q.: Size and interface effects on several kinetic and thermodynamic properties of polymer thin films. Thin Solid Films 515(4), 2765–2770 (2006)CrossRef Lang, X.Y., Zhu, Y.F., Jiang, Q.: Size and interface effects on several kinetic and thermodynamic properties of polymer thin films. Thin Solid Films 515(4), 2765–2770 (2006)CrossRef
44.
go back to reference Shodja, H.M., Enzevaee, C.: Surface characterization of face-centered cubic crystals. Mech. Mater. 129, 15–22 (2019)CrossRef Shodja, H.M., Enzevaee, C.: Surface characterization of face-centered cubic crystals. Mech. Mater. 129, 15–22 (2019)CrossRef
45.
go back to reference Shenoy, V.B.: Atomistic calculations of elastic properties of metallic fcc crystal surfaces. Phys. Rev. B 71(9), 094104 (2005)CrossRef Shenoy, V.B.: Atomistic calculations of elastic properties of metallic fcc crystal surfaces. Phys. Rev. B 71(9), 094104 (2005)CrossRef
Metadata
Title
Cracked elastic layer with surface elasticity under antiplane shear loading
Authors
Ying Yang
Zhen-Liang Hu
Xian-Fang Li
Publication date
27-05-2020
Publisher
Springer Vienna
Published in
Acta Mechanica / Issue 7/2020
Print ISSN: 0001-5970
Electronic ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-020-02695-7

Other articles of this Issue 7/2020

Acta Mechanica 7/2020 Go to the issue

Premium Partners