Skip to main content
Top

2014 | OriginalPaper | Chapter

6. Crackling Noise in Basalt and Gabbro

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A variety of systems ranging in size from as small as a crumpling piece of paper to as large as earthquakes on fault planes can produce crackling noise. A piece of paper crumples when it is squeezed into a ball. Small parts of the paper bend and jump into the new configurations to emit crackle sounds during the process. The Earth responds through earthquakes when tectonic plates interact with each other.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bak, P., Tang, C., & Wiesenfeld, K. (1987). Self-organized criticality: An explanation of the 1/f noise. Physical Review Letters, 59(4), 381–384.CrossRef Bak, P., Tang, C., & Wiesenfeld, K. (1987). Self-organized criticality: An explanation of the 1/f noise. Physical Review Letters, 59(4), 381–384.CrossRef
2.
go back to reference Bak, P., Tang, C., & Wiesenfeld, K. (1988). Self-organized criticality. Physical Review A, 38(1), 364–374.CrossRef Bak, P., Tang, C., & Wiesenfeld, K. (1988). Self-organized criticality. Physical Review A, 38(1), 364–374.CrossRef
3.
go back to reference Gutenberg, B., & Richter, C. (1954). Seismicity of the earth and associated phenomena (2nd ed.). Princeton: Princeton University Press. (1st ed. 1949). Gutenberg, B., & Richter, C. (1954). Seismicity of the earth and associated phenomena (2nd ed.). Princeton: Princeton University Press. (1st ed. 1949).
4.
go back to reference Sethna, J. P., Dahmen, K. A., & Myers, C. R. (2001). Crackling noise. Nature, 410(6825), 242–250.CrossRef Sethna, J. P., Dahmen, K. A., & Myers, C. R. (2001). Crackling noise. Nature, 410(6825), 242–250.CrossRef
5.
go back to reference Olami, Z., Feder, H. J. S., & Christensen, K. (1992). Self-organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes. Physical Review Letters, 68(8), 1244–1247.CrossRef Olami, Z., Feder, H. J. S., & Christensen, K. (1992). Self-organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes. Physical Review Letters, 68(8), 1244–1247.CrossRef
6.
go back to reference Pacheco, J. F., Scholz, C. H., & Sykes, L. R. (1992). Changes in frequency-size relationship from small to large earthquakes. Nature, 355(6355), 71–73.CrossRef Pacheco, J. F., Scholz, C. H., & Sykes, L. R. (1992). Changes in frequency-size relationship from small to large earthquakes. Nature, 355(6355), 71–73.CrossRef
7.
go back to reference Niccolini, G., Durin, G., Carpinteri, A., Lacidogna, G., & Manuello, A. (2009). Crackling noise and universality in fracture systems. Journal of Statistical Mechanics: Theory and Experiment, 2009(1), P010203. Niccolini, G., Durin, G., Carpinteri, A., Lacidogna, G., & Manuello, A. (2009). Crackling noise and universality in fracture systems. Journal of Statistical Mechanics: Theory and Experiment, 2009(1), P010203.
8.
go back to reference Halász, Z., Timár, G., & Kun, F. (2010). The effect of disorder on crackling noise in fracture phenomena. Progress of Theoretical Physics Supplement, 184, 385–399.CrossRef Halász, Z., Timár, G., & Kun, F. (2010). The effect of disorder on crackling noise in fracture phenomena. Progress of Theoretical Physics Supplement, 184, 385–399.CrossRef
9.
go back to reference Chmel, A., Kuksenko, V. S., Smirnov, V. S., & Tomilin, N. G. (2007). Anomalies of critical state in fracturing geophysical objects. Nonlinear Processes in Geophysics, 14(2), 103–108.CrossRef Chmel, A., Kuksenko, V. S., Smirnov, V. S., & Tomilin, N. G. (2007). Anomalies of critical state in fracturing geophysical objects. Nonlinear Processes in Geophysics, 14(2), 103–108.CrossRef
10.
go back to reference Salje, E. K. H., Koppensteiner, J., Reinecker, M., Schranz, W., & Planes, A. (2009). Jerky elasticity: Avalanches and the martensitic transition in cu\({_{74.08}}\)al\({_{23.13}}\)be\({_{2.79}}\) shape-memory alloy. Applied Physics Letters, 95(23), 231908.CrossRef Salje, E. K. H., Koppensteiner, J., Reinecker, M., Schranz, W., & Planes, A. (2009). Jerky elasticity: Avalanches and the martensitic transition in cu\({_{74.08}}\)al\({_{23.13}}\)be\({_{2.79}}\) shape-memory alloy. Applied Physics Letters, 95(23), 231908.CrossRef
11.
go back to reference Bonnot, E., Mańosa, L., Soto-Parra, A., Vives, D., Ludwig, E., & Strothkaemper, C. (2008). Acoustic emission in the fcc-fct martensitic transition of fe_68.8pd_31.2. Physical Review B, 78(18), 184103. Bonnot, E., Mańosa, L., Soto-Parra, A., Vives, D., Ludwig, E., & Strothkaemper, C. (2008). Acoustic emission in the fcc-fct martensitic transition of fe_68.8pd_31.2. Physical Review B, 78(18), 184103.
12.
go back to reference Gallardo, M. C., Manchado, J., Romero, F. J., Salje, E. K. H., Planes, A., Vives, E., et al. (2010). Avalanche criticality in the martensitic transition of cu\({_{67.64}}\)zn\({_{16.71}}\)al\( _{15.65} shape-memory alloy: A calorimetric and acoustic emission study .\) Physical Review B, 81(17), 174102. Gallardo, M. C., Manchado, J., Romero, F. J., Salje, E. K. H., Planes, A., Vives, E., et al. (2010). Avalanche criticality in the martensitic transition of cu\({_{67.64}}\)zn\({_{16.71}}\)al\( _{15.65} shape-memory alloy: A calorimetric and acoustic emission study .\) Physical Review B, 81(17), 174102.
13.
go back to reference Koivisto, J., Rosti, J., & Alava, M. J. (2007). Creep of a fracture line in paper peeling. Physical Review Letters, 99(14), 145504.CrossRef Koivisto, J., Rosti, J., & Alava, M. J. (2007). Creep of a fracture line in paper peeling. Physical Review Letters, 99(14), 145504.CrossRef
14.
go back to reference Laurson, L., Santucci, S., & Zapperi, S. (2010). Avalanches and clusters in planar crack front propagation. Physical Review E, 81(4), 046116.CrossRef Laurson, L., Santucci, S., & Zapperi, S. (2010). Avalanches and clusters in planar crack front propagation. Physical Review E, 81(4), 046116.CrossRef
15.
go back to reference Colaiori, F. (2008). Exactly solvable model of avalanches dynamics for barkhausen crackling noise. Advances in Physics, 57(4), 287–359.CrossRef Colaiori, F. (2008). Exactly solvable model of avalanches dynamics for barkhausen crackling noise. Advances in Physics, 57(4), 287–359.CrossRef
16.
go back to reference Kun, F., & Halász, Z, Jr. (2009). Crackling noise in sub-critical fracture of heterogeneous materials. Journal of Statistical Mechanics: Theory and Experiment, 2009(01), P01021.CrossRef Kun, F., & Halász, Z, Jr. (2009). Crackling noise in sub-critical fracture of heterogeneous materials. Journal of Statistical Mechanics: Theory and Experiment, 2009(01), P01021.CrossRef
Metadata
Title
Crackling Noise in Basalt and Gabbro
Author
Su-Ying Chien
Copyright Year
2014
DOI
https://doi.org/10.1007/978-3-319-03098-2_6