Skip to main content
Top
Published in: Thermal Engineering 11/2022

01-11-2022 | HEAT AND MASS TRANSFER AND PROPERTIES OF WORKING FLUIDS AND MATERIALS

Crisis Phenomena and Heat-Transfer Enhancement during Boling and Evaporation in Horizontal Liquid Films (Review)

Authors: A. N. Pavlenko, V. I. Zhukov, D. A. Shvetsov

Published in: Thermal Engineering | Issue 11/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A brief review is presented of studies in the field of heat-transfer enhancement and for increasing the critical heat fluxes (CHFs) during boiling and evaporation in thin horizontal liquid layers. The effect of the liquid layer height on heat-transfer efficiency at various heat fluxes has been analyzed. Decreasing the film thickness enhances heat transfer at low heat fluxes, while heat-transfer augmentation occurs at high heat fluxes in films whose height is greater than the capillary constant. The heat-transfer coefficient (HTC) first rises with a layer height, and then decreases to pool boiling values. The structures formed in thin liquid layers are examined in a wide range of layer heights and pressures. The mechanisms of formation of various structures and the effect on heat-transfer enhancement depending on process conditions were also discussed. The existence of regimes with heat-transfer enhancement during evaporation of a liquid layer at reduced pressures has been demonstrated. The heat-transfer coefficient in these regimes is higher than during nucleate boiling in a layer of the same height at a higher pressure. This is caused by the effect of the structures formed in these regimes. It has been found that CHF rises with an increase in the layer thickness to pool boiling values. The heat-transfer coefficients during nucleate boiling in thin films on capillary-porous surfaces are approximately three to five times higher than on a smooth surface. It has been demonstrated that there is an optimal film surface at low pressures, which provides higher heat-transfer coefficients than those on a smooth surface. Higher heat conductivity coatings of the same shape considerably increase CHFs in the entire pressure range for liquid layer thicknesses of the order of the capillary constant. It was found that, with a characteristic spacing between the coating fins, which is equal to the capillary constant of the liquid, the highest heat-transfer coefficients are attained in the experiments.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
The solid component of a part is manufactured by selective laser melting (SLM) technology, and the porous coating by the selective laser sintering (SLS) technology.
 
Literature
1.
go back to reference G. N. Kruzhilin, “Heat transfer from a horizontal plate to a boiling liquid under free convection,” Dokl. Akad. Nauk SSSR 58, 1657–1660 (1947). G. N. Kruzhilin, “Heat transfer from a horizontal plate to a boiling liquid under free convection,” Dokl. Akad. Nauk SSSR 58, 1657–1660 (1947).
2.
go back to reference W. Fritz, “Berechnung des maximalen Volumens von Dampfblasen,” Phys. Z. 36, 379–384 (1935). W. Fritz, “Berechnung des maximalen Volumens von Dampfblasen,” Phys. Z. 36, 379–384 (1935).
3.
go back to reference M. Jakob and W. Linke, “Der Wärmeübergang beim Verdampfen von Flüssigkeiten an senkrechten und waagerechten Flächen,” Phys. Z. 36, 267–280 (1935). M. Jakob and W. Linke, “Der Wärmeübergang beim Verdampfen von Flüssigkeiten an senkrechten und waagerechten Flächen,” Phys. Z. 36, 267–280 (1935).
4.
go back to reference S. S. Kutateladze, Heat Transfer in Condensation and Boiling, 2nd ed. (Meshgiz, Moscow, 1952; U.S. Atomic Energy Commission Technical Information Service, Oak Ridge, Tenn., 1952). S. S. Kutateladze, Heat Transfer in Condensation and Boiling, 2nd ed. (Meshgiz, Moscow, 1952; U.S. Atomic Energy Commission Technical Information Service, Oak Ridge, Tenn., 1952).
5.
go back to reference V. I. Tolubinskii, V. A. Antonenko, and Yu. N. Ostrovskii, “Heat transfer in vaporization in thin films,” Prom. Teplotekh. 3 (3), 9–13 (1961). V. I. Tolubinskii, V. A. Antonenko, and Yu. N. Ostrovskii, “Heat transfer in vaporization in thin films,” Prom. Teplotekh. 3 (3), 9–13 (1961).
6.
go back to reference V. A. Grigor’ev and A. S. Dudkevich, “Boiling of cryogenic liquids in a thin film,” Teploenergetika, No. 12, 54–57 (1970). V. A. Grigor’ev and A. S. Dudkevich, “Boiling of cryogenic liquids in a thin film,” Teploenergetika, No. 12, 54–57 (1970).
7.
go back to reference V. A. Grigor’ev, A. S. Dudkevich, and Yu. M. Pavlov, “Boiling of cryogenic liquids in a thin film,” Vopr. Radioelektron., Ser.: Tepl. Rezhimy, Termostatirovanie Okhlazhd. Radioelektron. Appar., No. 1, 83–90 (1970). V. A. Grigor’ev, A. S. Dudkevich, and Yu. M. Pavlov, “Boiling of cryogenic liquids in a thin film,” Vopr. Radioelektron., Ser.: Tepl. Rezhimy, Termostatirovanie Okhlazhd. Radioelektron. Appar., No. 1, 83–90 (1970).
8.
go back to reference V. A. Grigor’ev, Yu. M. Pavlov, and E. V. Ametistov, Boiling of Cryogenic Liquids (Energiya, Moscow, 1977) [in Russian]. V. A. Grigor’ev, Yu. M. Pavlov, and E. V. Ametistov, Boiling of Cryogenic Liquids (Energiya, Moscow, 1977) [in Russian].
11.
go back to reference V. I. Tolubinskii, Heat Exchange at Boiling (Naukova dumka, Kiev, 1980) [in Russian]. V. I. Tolubinskii, Heat Exchange at Boiling (Naukova dumka, Kiev, 1980) [in Russian].
12.
go back to reference V. I. Tolubinskii, V. A. Antonenko, A. A. Kriveshko, and Yu. N. Ostrovskii, “Suppression of nucleate boiling in a stationary liquid film,” Teplofiz. Vys. Temp. 15, 822–827 (1977). V. I. Tolubinskii, V. A. Antonenko, A. A. Kriveshko, and Yu. N. Ostrovskii, “Suppression of nucleate boiling in a stationary liquid film,” Teplofiz. Vys. Temp. 15, 822–827 (1977).
13.
go back to reference K. Nishikawa, “Nucleate boiling in liquid film,” Trans. Jpn. Soc. Mech. Eng. 34, 935–949 (1968). K. Nishikawa, “Nucleate boiling in liquid film,” Trans. Jpn. Soc. Mech. Eng. 34, 935–949 (1968).
17.
go back to reference V. I. Deev, V. V. Gusev, and G. P. Dubrovskii, “Investigation of the mechanism of boiling water at reduced pressures,” Teploenergetika, No. 8, 73– 75 (1965). V. I. Deev, V. V. Gusev, and G. P. Dubrovskii, “Investigation of the mechanism of boiling water at reduced pressures,” Teploenergetika, No. 8, 73– 75 (1965).
18.
go back to reference V. I. Tolubinskii, V. A. Antonenko, and Yu. N. Ostrovskii, “Boundaries of the region of existence of nucleate boiling of a saturated liquid,” Teplofiz. Teplotekh., No. 34, 3–6 (1978). V. I. Tolubinskii, V. A. Antonenko, and Yu. N. Ostrovskii, “Boundaries of the region of existence of nucleate boiling of a saturated liquid,” Teplofiz. Teplotekh., No. 34, 3–6 (1978).
19.
go back to reference M. K. Bezrodnyi, I. L. Pioro, and T. O. Kostyuk, Transport Processes in Two-Phase Thermosyphon Systems. Theory and Practice, 2nd ed. (Fakt, Kyiv, 2005) [in Russian]. M. K. Bezrodnyi, I. L. Pioro, and T. O. Kostyuk, Transport Processes in Two-Phase Thermosyphon Systems. Theory and Practice, 2nd ed. (Fakt, Kyiv, 2005) [in Russian].
21.
go back to reference I. L. Pioro, “Boiling heat transfer characteristics of thin liquid layers in a horizontally flat two-phase thermosiphon,” in Preprints of the 10th Int. Heat Pipe Conf., Stuttgart, Germany, Sept. 1997, paper H1-5. I. L. Pioro, “Boiling heat transfer characteristics of thin liquid layers in a horizontally flat two-phase thermosiphon,” in Preprints of the 10th Int. Heat Pipe Conf., Stuttgart, Germany, Sept. 1997, paper H1-5.
28.
go back to reference I. I. Gogonin, A. R. Dorokhov, and V. I. Zhukov, “Study of evaporation from a thin oil layer under vacuum conditions,” Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Tekh. Nauk, No. 3, 8–13 (1989). I. I. Gogonin, A. R. Dorokhov, and V. I. Zhukov, “Study of evaporation from a thin oil layer under vacuum conditions,” Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Tekh. Nauk, No. 3, 8–13 (1989).
29.
go back to reference V. I. Zhukov, “Enhanced heat transfer under conditions of liquid boiling in a thin layer at reduced pressure,” Theor. Found. Chem. Eng. 45, 690–694 (2011).CrossRef V. I. Zhukov, “Enhanced heat transfer under conditions of liquid boiling in a thin layer at reduced pressure,” Theor. Found. Chem. Eng. 45, 690–694 (2011).CrossRef
39.
go back to reference A. K. Rajvanshi, J. S. Saini, and R. Prakash, “Investigation of macrolayer thickness in nucleate pool boiling at high heat flux,” Int. J. Heat Mass Transfer 35, 343–350 (1992).CrossRef A. K. Rajvanshi, J. S. Saini, and R. Prakash, “Investigation of macrolayer thickness in nucleate pool boiling at high heat flux,” Int. J. Heat Mass Transfer 35, 343–350 (1992).CrossRef
42.
go back to reference K. A. Kumar, I. S. Raj, P. Jeyaraman, N. Tamilselvam, and B. R. Aravindraj, “The development of macrolayer thickness of water in the pool boiling regime,” Int. J. Ambient Energy 41, 1057–1059 (2020).CrossRef K. A. Kumar, I. S. Raj, P. Jeyaraman, N. Tamilselvam, and B. R. Aravindraj, “The development of macrolayer thickness of water in the pool boiling regime,” Int. J. Ambient Energy 41, 1057–1059 (2020).CrossRef
45.
go back to reference K. O. Pasamehmetoglu, P. R. Chappidi, C. Unal, and R. A. Nelson, “Saturated pool nucleate boiling mechanisms at high heat fluxes,” Int. J. Heat Mass Transfer 36, 3859–3868 (1993).CrossRef K. O. Pasamehmetoglu, P. R. Chappidi, C. Unal, and R. A. Nelson, “Saturated pool nucleate boiling mechanisms at high heat fluxes,” Int. J. Heat Mass Transfer 36, 3859–3868 (1993).CrossRef
50.
go back to reference B. V. Deryagin, N. V. Churaev, and V. M. Muller, Surface Forces (Nauka, Moscow, 1985; Consultants Bureau, New York, 1987). B. V. Deryagin, N. V. Churaev, and V. M. Muller, Surface Forces (Nauka, Moscow, 1985; Consultants Bureau, New York, 1987).
52.
go back to reference V. I. Tolubinskii, V. A. Antonenko, and G. V. Ivanenko, “Effect of liquid layer thickness on critical thermal loads at boiling,” Prom. Teplotekh. 10 (2), 3–6 (1988). V. I. Tolubinskii, V. A. Antonenko, and G. V. Ivanenko, “Effect of liquid layer thickness on critical thermal loads at boiling,” Prom. Teplotekh. 10 (2), 3–6 (1988).
53.
go back to reference S. S. Kutateladze, “Hydromechanical model of heat transfer crisis in a boiling liquid with free convection,” Zh. Tekh. Fiz. 20, 1389–1392 (1950). S. S. Kutateladze, “Hydromechanical model of heat transfer crisis in a boiling liquid with free convection,” Zh. Tekh. Fiz. 20, 1389–1392 (1950).
54.
go back to reference V. V. Yagov, “Physical model and calculation formula for critical heat fluxes with nucleate pool boiling of liquids,” Therm. Eng. 35, 333–339 (1988). V. V. Yagov, “Physical model and calculation formula for critical heat fluxes with nucleate pool boiling of liquids,” Therm. Eng. 35, 333–339 (1988).
55.
go back to reference L. D. Landau, “On the theory of slow combustion,” Zh. Eksp. Teor. Fiz. 14, 240–245 (1944). L. D. Landau, “On the theory of slow combustion,” Zh. Eksp. Teor. Fiz. 14, 240–245 (1944).
59.
go back to reference A. N. Pavlenko, “On the physics of the development of boiling crisis phenomena (comments on the article of E. D. Fedorovich "On the expediency of developing a two-stage model of boiling crisis of a liquid wetting a heating surface”),” Therm. Eng. 67, 853–859 (2020). https://doi.org/10.1134/S0040601520110099CrossRef A. N. Pavlenko, “On the physics of the development of boiling crisis phenomena (comments on the article of E. D. Fedorovich "On the expediency of developing a two-stage model of boiling crisis of a liquid wetting a heating surface”),” Therm. Eng. 67, 853–859 (2020). https://​doi.​org/​10.​1134/​S004060152011009​9CrossRef
72.
go back to reference V. I. Tolubinskii, V. A. Antonenko, Yu. N. Ostrovskii, and E. N. Shevchuk, “Limiting heat flux densities at liquid evaporation in capillaries of wicks of low-temperature heat pipes,” Teplofiz. Vys. Temp. 18, 367–373 (1980). V. I. Tolubinskii, V. A. Antonenko, Yu. N. Ostrovskii, and E. N. Shevchuk, “Limiting heat flux densities at liquid evaporation in capillaries of wicks of low-temperature heat pipes,” Teplofiz. Vys. Temp. 18, 367–373 (1980).
77.
78.
go back to reference A. N. Pavlenko and V. V. Lel, “Heat transfer and crisis phenomena in falling films of cryogenic liquid,” Russ. J. Eng. Thermophys. 7, 177–210 (1997). A. N. Pavlenko and V. V. Lel, “Heat transfer and crisis phenomena in falling films of cryogenic liquid,” Russ. J. Eng. Thermophys. 7, 177–210 (1997).
84.
go back to reference D. A. Shvetsov, A. N. Pavlenko, and V. I. Zhukov, “Influence of the morphology of a capillary-porous coating on the evaporation and boiling of a thin liquid layer,” in Technologies. Innovations: Collection of Scientific Papers (Nauka, Novosibirsk, 2021), pp. 104–108 [in Russian]. D. A. Shvetsov, A. N. Pavlenko, and V. I. Zhukov, “Influence of the morphology of a capillary-porous coating on the evaporation and boiling of a thin liquid layer,” in Technologies. Innovations: Collection of Scientific Papers (Nauka, Novosibirsk, 2021), pp. 104–108 [in Russian].
Metadata
Title
Crisis Phenomena and Heat-Transfer Enhancement during Boling and Evaporation in Horizontal Liquid Films (Review)
Authors
A. N. Pavlenko
V. I. Zhukov
D. A. Shvetsov
Publication date
01-11-2022
Publisher
Pleiades Publishing
Published in
Thermal Engineering / Issue 11/2022
Print ISSN: 0040-6015
Electronic ISSN: 1555-6301
DOI
https://doi.org/10.1134/S0040601522110076

Other articles of this Issue 11/2022

Thermal Engineering 11/2022 Go to the issue

RENEWABLE ENERGY SOURCES, HYDROPOWER ENGINEERING

Integrated Aluminum-Water Technology for Hydrogen Production

STEAM BOILERS, POWER-PLANT FUELS, BURNER UNITS, AND BOILER AUXILIARY EQUIPMENT

A Pulverized Coal Fuel Electrical Ignition System and Its Application Experience

Premium Partner