Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

27-04-2016 | Original Article | Issue 5/2017

International Journal of Machine Learning and Cybernetics 5/2017

Cross kernel distance minimization for designing support vector machines

Journal:
International Journal of Machine Learning and Cybernetics > Issue 5/2017
Authors:
Yujian Li, Qiangkui Leng, Yaozong Fu

Abstract

Cross distance minimization algorithm (CDMA) is an iterative method for designing a hard margin linear SVM based on the nearest point pair between the convex hulls of two linearly separable data sets. In this paper, we propose a new version of CDMA with clear explanation of its linear time complexity. Using kernel function and quadratic cost, we extend the new CDMA to its kernel version, namely, the cross kernel distance minimization algorithm (CKDMA), which has the requirement of linear memory storage and the advantages over the CDMA including: (1) it is applicable in the non-linear case; (2) it allows violations to classify non-separable data sets. In terms of testing accuracy, training time, and number of support vectors, experimental results show that the CKDMA is very competitive with some well-known and powerful SVM methods such as nearest point algorithm (NPA), kernel Schlesinger-Kozinec (KSK) algorithm and sequential minimal optimization (SMO) algorithm implemented in LIBSVM2.9.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 5/2017

International Journal of Machine Learning and Cybernetics 5/2017 Go to the issue