Skip to main content
Top

2025 | OriginalPaper | Chapter

Cross-Project Software Defect Prediction Using Ensemble Model with Individual Data Balancing and Feature Selection

Authors : Vitaliy Yakovyna, Oleh Nesterchuk

Published in: Advances in Mobile Computing and Multimedia Intelligence

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The quality of software significantly influences its safety and security. With the rapid expansion of software development, the issue of coding quality has become increasingly critical. The manual and resource-intensive nature of error detection in software and its inherent unreliability underscores the necessity for automation. Consequently, a burgeoning interest is employing machine learning methods for software defect prediction. This study introduces a novel stacking software cross-project defect prediction model. Each weak classifier undergoes a learning process incorporating individual data balancing and feature selection techniques. The efficacy of the model was evaluated using accuracy and F1 score metrics on multiple project datasets sourced from the PROMISE repository. The application of the proposed model yielded a classification accuracy of 0.839 and an F1 score of 0.909, surpassing the average performance of single classifiers.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
9.
Metadata
Title
Cross-Project Software Defect Prediction Using Ensemble Model with Individual Data Balancing and Feature Selection
Authors
Vitaliy Yakovyna
Oleh Nesterchuk
Copyright Year
2025
DOI
https://doi.org/10.1007/978-3-031-78049-3_15

Premium Partner