Skip to main content
Top
Published in: Physics of Metals and Metallography 12/2021

01-12-2021 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Crowdion in Deformed FCC Metal. Atomistic Modeling

Authors: S. A. Starikov, A. R. Kuznetsov, V. V. Sagaradze

Published in: Physics of Metals and Metallography | Issue 12/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Crowdions in metals are very mobile (compared to others) point defects, providing mass transfer, which is especially important at room and lower temperatures. In this work, the behavior of a crowdion in an fcc metal (e.g., nickel and copper) subjected to severe deformation is studied theoretically. It is shown that, at a certain strain, the 〈110〉 crowdion configuration of an interstitial atom becomes preferable to the dumbbell configuration in a wide temperature range. The atomic displacement fields of a crowdion are described in the Frenkel–Kontorova model. The phonon density of states is found by the molecular dynamics method using Green’s functions. The average velocity of the crowdion motion as a function of the strain rate is found. It is shown that the velocity of the crowdion motion is significantly lower than the velocity corresponding to the maximum frequency in the phonon density of states and decreases with a decrease in the strain rate, which makes it possible to reveal the character of the crowdion motion.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference V. L. Indenbom, “Interstitial (crowdion) mechanism of plastic deformation and fracture,” Pis’ma Zh. Eksp. Teor. Fiz. 12, 526–528 (1970). V. L. Indenbom, “Interstitial (crowdion) mechanism of plastic deformation and fracture,” Pis’ma Zh. Eksp. Teor. Fiz. 12, 526–528 (1970).
2.
go back to reference Yu. I. Golovin, “Nanoindentation and mechanical properties of solids in submicrovolumes, thin near-surface layers, and films: A review,” Phys. Solid State 50, 2205–2236 (2008).CrossRef Yu. I. Golovin, “Nanoindentation and mechanical properties of solids in submicrovolumes, thin near-surface layers, and films: A review,” Phys. Solid State 50, 2205–2236 (2008).CrossRef
3.
go back to reference V. D. Natsik and S. N. Smirnov, “Dislocations and crowdions in two-dimensional crystals. Part III: plastic deformation of the crystal as a result of defect movement and defect interaction with the field of elastic stresses,” Low Temp. Phys. 42, No. 3, 207–218 (2016).CrossRef V. D. Natsik and S. N. Smirnov, “Dislocations and crowdions in two-dimensional crystals. Part III: plastic deformation of the crystal as a result of defect movement and defect interaction with the field of elastic stresses,” Low Temp. Phys. 42, No. 3, 207–218 (2016).CrossRef
4.
go back to reference V. D. Natsik, S. N. Smirnov, and V. I. Belan, “Computer modeling and analytical description of structural defects in two-dimensional crystals of bounded sizes: Free boundary, dislocations, and crowdions,” Low Temp. Phys. 44, No. 7, 688–695 (2018).CrossRef V. D. Natsik, S. N. Smirnov, and V. I. Belan, “Computer modeling and analytical description of structural defects in two-dimensional crystals of bounded sizes: Free boundary, dislocations, and crowdions,” Low Temp. Phys. 44, No. 7, 688–695 (2018).CrossRef
5.
go back to reference A. V. Markidonov, P. V. Zakharov, M. D. Starostenkov, and N. N. Medvedev, Mechanisms of Cooperative Behavior of Atoms in Crystal (Filial KuzGTU, Novokuznetsk, 2016) [in Russian]. A. V. Markidonov, P. V. Zakharov, M. D. Starostenkov, and N. N. Medvedev, Mechanisms of Cooperative Behavior of Atoms in Crystal (Filial KuzGTU, Novokuznetsk, 2016) [in Russian].
6.
go back to reference I. Salehinia and D. F. Bahr, “The impact of a variety of point defects on the inception of plastic deformation in dislocation-free metals,” Scr. Mater. 66, 339–342 (2012).CrossRef I. Salehinia and D. F. Bahr, “The impact of a variety of point defects on the inception of plastic deformation in dislocation-free metals,” Scr. Mater. 66, 339–342 (2012).CrossRef
7.
go back to reference A. Korbel and W. Bochniak, “Stratified plastic flow in metals,” Int. J. Mech. Sci. 128–129, 269–276 (2017).CrossRef A. Korbel and W. Bochniak, “Stratified plastic flow in metals,” Int. J. Mech. Sci. 128–129, 269–276 (2017).CrossRef
8.
go back to reference S. V. Dmitriev, N. N. Medvedev, A. P. Chetverikov, K. Zhou, and M. G. Velarde, “Highly enhanced transport by supersonic N-crowdions,” Phys. Status Solidi RRL, 1700298 (2017). S. V. Dmitriev, N. N. Medvedev, A. P. Chetverikov, K. Zhou, and M. G. Velarde, “Highly enhanced transport by supersonic N-crowdions,” Phys. Status Solidi RRL, 1700298 (2017).
9.
go back to reference S. V. Dmitriev, E. A. Korznikova, and A. P. Chetverikov, “Supersonic N-crowdions in a two-dimensional morse crystal,” J. Exp. Theor. Phys. 126, 347–352 (2018).CrossRef S. V. Dmitriev, E. A. Korznikova, and A. P. Chetverikov, “Supersonic N-crowdions in a two-dimensional morse crystal,” J. Exp. Theor. Phys. 126, 347–352 (2018).CrossRef
10.
go back to reference A. Moradi Marjaneh, D. Saadatmand, I. Evazzade, R. I. Babicheva, E. G. Soboleva, N. Srikanth, Z. Kun, E. A. Korznikova, and S. V. Dmitriev, “Mass transfer in the Frenkel–Kontorova chain initiated by molecule impact,” Phys. Rev. E 98, 023003 (2018).CrossRef A. Moradi Marjaneh, D. Saadatmand, I. Evazzade, R. I. Babicheva, E. G. Soboleva, N. Srikanth, Z. Kun, E. A. Korznikova, and S. V. Dmitriev, “Mass transfer in the Frenkel–Kontorova chain initiated by molecule impact,” Phys. Rev. E 98, 023003 (2018).CrossRef
11.
go back to reference A. M. Bayazitov, E. A. Korznikova, I. A. Shepelev, A. P. Chetverikov, S. Kh. Khadiullin, E. A. Sharapov, P. V. Zakharov, and S. V. Dmitriev, “Scenarios of mass transfer in fcc copper: the role of point defects,” IOP Conf. Ser.: Mater. Sci. Eng. 447, 012040 (2018). A. M. Bayazitov, E. A. Korznikova, I. A. Shepelev, A. P. Chetverikov, S. Kh. Khadiullin, E. A. Sharapov, P. V. Zakharov, and S. V. Dmitriev, “Scenarios of mass transfer in fcc copper: the role of point defects,” IOP Conf. Ser.: Mater. Sci. Eng. 447, 012040 (2018).
12.
go back to reference V. L. Arbuzov, B. N. Goshchitskii, V. V. Sagaradze, S. E. Danilov, and A. E. Kar’kin, “Accumulation and annealing of radiation defects under low-temperature electron and neutron irradiation of ods steel and Fe–Cr alloys,” Phys. Met. Metallogr. 110, No. 4, 366–377 (2010).CrossRef V. L. Arbuzov, B. N. Goshchitskii, V. V. Sagaradze, S. E. Danilov, and A. E. Kar’kin, “Accumulation and annealing of radiation defects under low-temperature electron and neutron irradiation of ods steel and Fe–Cr alloys,” Phys. Met. Metallogr. 110, No. 4, 366–377 (2010).CrossRef
13.
go back to reference V. L. Arbuzov, B. N. Goshchitskii, V. V. Sagaradze, S. E. Danilov, Yu. N. Zuev, A. E. Kar’kin, V. D. Parkhomenko, A. V. Kozlov, and V. M. Chernov, “The accumulation and annealing of radiation-induced defects and the effect of hydrogen on the physicomechanical properties of the V4Ti4Cr and V10Ti5Cr vanadium-based alloys under low-temperature (at 77 K) neutron irradiation,” Phys. Met. Metallogr. 117, No. 3, 299–306 (2016).CrossRef V. L. Arbuzov, B. N. Goshchitskii, V. V. Sagaradze, S. E. Danilov, Yu. N. Zuev, A. E. Kar’kin, V. D. Parkhomenko, A. V. Kozlov, and V. M. Chernov, “The accumulation and annealing of radiation-induced defects and the effect of hydrogen on the physicomechanical properties of the V4Ti4Cr and V10Ti5Cr vanadium-based alloys under low-temperature (at 77 K) neutron irradiation,” Phys. Met. Metallogr. 117, No. 3, 299–306 (2016).CrossRef
14.
go back to reference S. E. Danilov, V. L. Arbuzov, N. L. Pecherkina, and V. V. Sagaradze, “Separation of radiation defects in deformed nickel,” Phys. Met. Metallogr. 116, No. 7, 711–717 (2015).CrossRef S. E. Danilov, V. L. Arbuzov, N. L. Pecherkina, and V. V. Sagaradze, “Separation of radiation defects in deformed nickel,” Phys. Met. Metallogr. 116, No. 7, 711–717 (2015).CrossRef
15.
go back to reference S. L. Dudarev, “Coherent motion of interstitial defects in a crystalline material,” Philos. Mag. 83, Nos. 31–34, 3577–3597 (2003).CrossRef S. L. Dudarev, “Coherent motion of interstitial defects in a crystalline material,” Philos. Mag. 83, Nos. 31–34, 3577–3597 (2003).CrossRef
16.
go back to reference P. M. Derlet, D. Nguyen-Manh, and S. L. Dudarev, “Multiscale modeling of crowdion and vacancy defects in body-centered-cubic transition metals,” Phys. Rev. B 76, 054107 (2007).CrossRef P. M. Derlet, D. Nguyen-Manh, and S. L. Dudarev, “Multiscale modeling of crowdion and vacancy defects in body-centered-cubic transition metals,” Phys. Rev. B 76, 054107 (2007).CrossRef
17.
go back to reference T. D. Swinburne, P. -W. Ma, and S. L. Dudarev, “Low temperature diffusivity of self-interstitial defects in tungsten,” New J. Phys. 19, 073024 (2021).CrossRef T. D. Swinburne, P. -W. Ma, and S. L. Dudarev, “Low temperature diffusivity of self-interstitial defects in tungsten,” New J. Phys. 19, 073024 (2021).CrossRef
18.
go back to reference E. Toijer, L. Messina, C. Domain, J. Vidal, C. S. Becquart,and P. Olsson, “Solute-point defect interactions, coupled diffusion, and radiation-induced segregation in fcc nickel,” Phys. Rev. Mater. 5, 013602 (2021).CrossRef E. Toijer, L. Messina, C. Domain, J. Vidal, C. S. Becquart,and P. Olsson, “Solute-point defect interactions, coupled diffusion, and radiation-induced segregation in fcc nickel,” Phys. Rev. Mater. 5, 013602 (2021).CrossRef
19.
go back to reference V. V. Sagaradze, V. A. Shabashov, N. V. Kataeva, V. A. Zavalishin, K. A. Kozlov, A. R. Kuznetsov, A. V. Litvinov, and V. P. Pilyugin, “Deformation-induced dissolution of the intermetallics Ni3Ti and Ni3Al in austenitic steels at cryogenic temperatures,” Philos. Mag. 96, No. 17, 1724–1742 (2016).CrossRef V. V. Sagaradze, V. A. Shabashov, N. V. Kataeva, V. A. Zavalishin, K. A. Kozlov, A. R. Kuznetsov, A. V. Litvinov, and V. P. Pilyugin, “Deformation-induced dissolution of the intermetallics Ni3Ti and Ni3Al in austenitic steels at cryogenic temperatures,” Philos. Mag. 96, No. 17, 1724–1742 (2016).CrossRef
20.
go back to reference V. V. Sagaradze, V. A. Shabashov, N. V. Kataeva, K. A. Kozlov, A. R. Kuznetsov, and A. V. Litvinov, “Anomalous diffusion processes “dissolution-precipitation” of γ' Phase Ni3Al in Fe–Ni–Al alloy during low temperature deformation,” Mater. Lett. 172, 207–210 (2016).CrossRef V. V. Sagaradze, V. A. Shabashov, N. V. Kataeva, K. A. Kozlov, A. R. Kuznetsov, and A. V. Litvinov, “Anomalous diffusion processes “dissolution-precipitation” of γ' Phase Ni3Al in Fe–Ni–Al alloy during low temperature deformation,” Mater. Lett. 172, 207–210 (2016).CrossRef
21.
go back to reference A. R. Kuznetsov, S. A. Starikov, V. V. Sagaradze, and L. E. Kar’kina, “Deformation-induced dissolution of Ni3Al particles in nickel: atomistic simulation,” Phys. Met. Metallogr. 120, No. 12, 1187–1192 (2019).CrossRef A. R. Kuznetsov, S. A. Starikov, V. V. Sagaradze, and L. E. Kar’kina, “Deformation-induced dissolution of Ni3Al particles in nickel: atomistic simulation,” Phys. Met. Metallogr. 120, No. 12, 1187–1192 (2019).CrossRef
22.
go back to reference O. M. Braun and Yu. S. Kivshar’, The Frenkel-Kontorova Model. Concepts, Methods, Applications (FIZMATLIT, Moscow, 2008) [in Russian]. O. M. Braun and Yu. S. Kivshar’, The Frenkel-Kontorova Model. Concepts, Methods, Applications (FIZMATLIT, Moscow, 2008) [in Russian].
23.
go back to reference V. V. Kirsanov and A. N. Orlov, “Computer simulation of atomic configurations of defects in metals,” Usp. Fiz. Nauk 142, 219–264 (1984).CrossRef V. V. Kirsanov and A. N. Orlov, “Computer simulation of atomic configurations of defects in metals,” Usp. Fiz. Nauk 142, 219–264 (1984).CrossRef
24.
go back to reference A. M. Kosevich, The Crystal Lattice: Phonons, Solitons, Dislocations, Superlattices (Wiley, Berlin, 2005).CrossRef A. M. Kosevich, The Crystal Lattice: Phonons, Solitons, Dislocations, Superlattices (Wiley, Berlin, 2005).CrossRef
25.
go back to reference G. S. Was, Fundamentals of Radiation Materials Science. Metals and Alloys (Springer, Berlin, 2007). G. S. Was, Fundamentals of Radiation Materials Science. Metals and Alloys (Springer, Berlin, 2007).
26.
go back to reference S. Plimpton, “Fast parallel algorithms for short-range molecular dynamics,” J. Comput. Phys. 117, 1–19 (1995).CrossRef S. Plimpton, “Fast parallel algorithms for short-range molecular dynamics,” J. Comput. Phys. 117, 1–19 (1995).CrossRef
27.
go back to reference A. Stukowski, “Visualization and analysis of atomistic simulation data with OVITO—the Open Visualization Tool,” Modell. Simul. Mater. Sci. Eng. 18, 015012 (2010).CrossRef A. Stukowski, “Visualization and analysis of atomistic simulation data with OVITO—the Open Visualization Tool,” Modell. Simul. Mater. Sci. Eng. 18, 015012 (2010).CrossRef
28.
go back to reference G. P. Purja Pun and Y. Mishin, “Development of an interatomic potential for the Ni–Al system,” Philos. Mag. 89, No. 34–36, 3245–3267 (2009).CrossRef G. P. Purja Pun and Y. Mishin, “Development of an interatomic potential for the Ni–Al system,” Philos. Mag. 89, No. 34–36, 3245–3267 (2009).CrossRef
29.
go back to reference S. M. Foiles, M. I. Baskes, and M. S. Daw, “Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys,” Phys. Rev. B 33, 7983 (1986).CrossRef S. M. Foiles, M. I. Baskes, and M. S. Daw, “Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys,” Phys. Rev. B 33, 7983 (1986).CrossRef
30.
go back to reference L. T. Kong, “Phonon dispersion measured directly from molecular dynamics simulations,” Comput. Phys. Commun. 182, 2201–2207 (2011).CrossRef L. T. Kong, “Phonon dispersion measured directly from molecular dynamics simulations,” Comput. Phys. Commun. 182, 2201–2207 (2011).CrossRef
31.
go back to reference M. I. Baskes, X. Shaz, J. E. Angelox, and N. R. Moody, “Trapping of hydrogen to lattice defects in nickel,” Modell. Simul. Mater. Sci. Eng. 5, 651–652 (1997).CrossRef M. I. Baskes, X. Shaz, J. E. Angelox, and N. R. Moody, “Trapping of hydrogen to lattice defects in nickel,” Modell. Simul. Mater. Sci. Eng. 5, 651–652 (1997).CrossRef
32.
go back to reference Y. Mishin, M. J. Mehl, D. A. Papaconstantopoulos, A. F. Voter, and J. D. Kress, “Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations,” Phys. Rev. B 63, 224106 (2001).CrossRef Y. Mishin, M. J. Mehl, D. A. Papaconstantopoulos, A. F. Voter, and J. D. Kress, “Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations,” Phys. Rev. B 63, 224106 (2001).CrossRef
33.
go back to reference S. Nosé, “A unified formulation of the constant temperature molecular-dynamics methods,” J. Chem. Phys. 81, 511–519 (1984).CrossRef S. Nosé, “A unified formulation of the constant temperature molecular-dynamics methods,” J. Chem. Phys. 81, 511–519 (1984).CrossRef
34.
go back to reference W. G. Hoover, “Canonical dynamics: Equilibrium phase-space distributions,” Phys. Rev. A 31, 1695–1697 (1985).CrossRef W. G. Hoover, “Canonical dynamics: Equilibrium phase-space distributions,” Phys. Rev. A 31, 1695–1697 (1985).CrossRef
35.
go back to reference Yu. N. Gornostyrev, M. I. Katsnelson, A. V. Kravtsov, and A. V. Trefilov, “Fluctuation-induced nucleation and dynamics of kinks on dislocation: Soliton and oscillation regimes in the two-dimensional Frenkel–Kontorova model,” Phys. Rev. B 60, 1013 (1999).CrossRef Yu. N. Gornostyrev, M. I. Katsnelson, A. V. Kravtsov, and A. V. Trefilov, “Fluctuation-induced nucleation and dynamics of kinks on dislocation: Soliton and oscillation regimes in the two-dimensional Frenkel–Kontorova model,” Phys. Rev. B 60, 1013 (1999).CrossRef
36.
go back to reference S. L. Dudarev, “The non-Arrhenius migration of interstitial defects in bcc transition metals,” C. R. Phys. 9, 409–417 (2008).CrossRef S. L. Dudarev, “The non-Arrhenius migration of interstitial defects in bcc transition metals,” C. R. Phys. 9, 409–417 (2008).CrossRef
37.
go back to reference T. D. Swinburne and S. L. Dudarev, “Phonon drag force acting on a mobile crystal defect: Full treatment of discreteness and nonlinearity,” Phys. Rev. B 92, 134302 (2015).CrossRef T. D. Swinburne and S. L. Dudarev, “Phonon drag force acting on a mobile crystal defect: Full treatment of discreteness and nonlinearity,” Phys. Rev. B 92, 134302 (2015).CrossRef
38.
go back to reference R. M. Nicklow, G. Gilat, H. G. Smith, L. J. Raubenheimer, and M. K. Wilkinson, “Phonon frequencies in copper at 49 and 298 K,” Phys. Rev. 164, 922 (1967).CrossRef R. M. Nicklow, G. Gilat, H. G. Smith, L. J. Raubenheimer, and M. K. Wilkinson, “Phonon frequencies in copper at 49 and 298 K,” Phys. Rev. 164, 922 (1967).CrossRef
39.
go back to reference A. N. Orlov, Introduction to Theory of Defects in Crystals (Vysshaya Shkola, Moscow, 1983) [in Russian]. A. N. Orlov, Introduction to Theory of Defects in Crystals (Vysshaya Shkola, Moscow, 1983) [in Russian].
40.
go back to reference Physical Values: Handbook, Ed. by I. S. Grigor’eva and E. Z. Meilikhova (Energoatomizdat, Moscow, 1991) [in Russian]. Physical Values: Handbook, Ed. by I. S. Grigor’eva and E. Z. Meilikhova (Energoatomizdat, Moscow, 1991) [in Russian].
41.
go back to reference E. A. Korznikova, I. R. Sunagatova, A. M. Bayazitov, A. S. Semenov, and S. V. Dmitriev, “Effect of interatomic potentials on mass transfer by supersonic 2‑crowdions,” Lett. Mater. 9, 386–390 (2019).CrossRef E. A. Korznikova, I. R. Sunagatova, A. M. Bayazitov, A. S. Semenov, and S. V. Dmitriev, “Effect of interatomic potentials on mass transfer by supersonic 2‑crowdions,” Lett. Mater. 9, 386–390 (2019).CrossRef
Metadata
Title
Crowdion in Deformed FCC Metal. Atomistic Modeling
Authors
S. A. Starikov
A. R. Kuznetsov
V. V. Sagaradze
Publication date
01-12-2021
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 12/2021
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X21120115

Other articles of this Issue 12/2021

Physics of Metals and Metallography 12/2021 Go to the issue