Skip to main content
Top
Published in: Journal of Materials Science 15/2016

04-05-2016 | Original Paper

Crystal structure and photocatalytic properties of titanate nanotubes prepared by chemical processing and subsequent annealing

Authors: Saima Ali, Henrika Granbohm, Yanling Ge, Vivek Kumar Singh, Frans Nilsén, Simo-Pekka Hannula

Published in: Journal of Materials Science | Issue 15/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Anatase TiO2 nanoparticles were synthesized from sol–gel processing, and they were used as a precursor for titanate nanotubes (TNT) formation. TNT were synthesized under reflux heating of anatase TiO2 in concentrated NaOH solution followed by repeated washing with distilled water and 0.1 M HCl. The nanotubular structure was preserved till 450 °C, above which nanorod formation started. The as-synthesized nanotubes were found to have mixed crystal structure of anatase and Na x H2−x Ti3O7·nH2O (where 0 < x <  2), contrary to what has been reported before. The XRD peaks of titanate were slightly shifted to higher angles upon calcination along with prominent anatase peaks. Complete transformation to nanorods occurred at 600 °C and crystal structure was transformed to Na2Ti6O13 and anatase. Sodium presence in TNT was confirmed by EDX, and Na–O and H–O–H along with Ti–OH vibrations were found by FTIR. Ti–OH/H–O–H vibrations were less prominent for samples calcined at 500 °C and above, which confirms structural water loss is associated with morphological change. The as-synthesized TNTs had a specific surface area of 157 m2 g−1, and it decreased by increasing calcination temperature. TNTs were applied to methylene blue aqueous solution to observe their decolorization capability under UV irradiation. The as-synthesized TNTs showed enhanced photocatalytic decolorization as compared to anatase titania nanoparticles due to presence of Ti–OH groups and higher specific surface area. The photocatalytic activity reduced when TNTs were annealed at high temperatures. The changes in the photocatalytic activity are related to the existence of hydroxyl groups in the structure, decrease in specific surface area of annealed nanotubes, change in morphology from nanotubes to nanorods, and bandgap shift to visible light when TNTs were calcined at higher temperatures.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Liu R, Yang W-D, Chueng H-J, Ren B-Q (2015) Preparation and application of titanate nanotubes on dye degradation from aqueous media by UV irradiation. J Spectrosc. doi:10.1155/2015/680183 Liu R, Yang W-D, Chueng H-J, Ren B-Q (2015) Preparation and application of titanate nanotubes on dye degradation from aqueous media by UV irradiation. J Spectrosc. doi:10.​1155/​2015/​680183
2.
go back to reference Zhang J, Xiao X, Nan J (2010) Hydrothermal-hydrolysis synthesis and photocatalytic properties of nano-TiO2 with an adjustable crystalline structure. J Hazard Mater 176:617–622CrossRef Zhang J, Xiao X, Nan J (2010) Hydrothermal-hydrolysis synthesis and photocatalytic properties of nano-TiO2 with an adjustable crystalline structure. J Hazard Mater 176:617–622CrossRef
3.
go back to reference Hu K, Xiao X, Cao X, Hao R, Zuo X, Zhang X, Nan J (2010) Adsorptive separation and photocatalytic degradation of methylene blue dye on titanate nanotube powders prepared by hydrothermal process using metal Ti particles as a precursor. J Hazard Mater 192:514–520CrossRef Hu K, Xiao X, Cao X, Hao R, Zuo X, Zhang X, Nan J (2010) Adsorptive separation and photocatalytic degradation of methylene blue dye on titanate nanotube powders prepared by hydrothermal process using metal Ti particles as a precursor. J Hazard Mater 192:514–520CrossRef
4.
go back to reference Lee C-K, Wang C-C, Lyu M-D, Juang L-C, Liu S-S, Hung S-H (2007) Effects of sodium content and calcination temperature on the morphology, structure and photocatalytic activity of nanotubular titanates. J Colloid Interf Sci 316:562–569CrossRef Lee C-K, Wang C-C, Lyu M-D, Juang L-C, Liu S-S, Hung S-H (2007) Effects of sodium content and calcination temperature on the morphology, structure and photocatalytic activity of nanotubular titanates. J Colloid Interf Sci 316:562–569CrossRef
5.
go back to reference Li J, Ma W, Chen C, Zhao J, Zhu H, Gao X (2007) Photodegradation of dye pollutants on one-dimensional TiO2 nanoparticles under UV and visible irradiation. J Mol Catal A Chem 261:131–138CrossRef Li J, Ma W, Chen C, Zhao J, Zhu H, Gao X (2007) Photodegradation of dye pollutants on one-dimensional TiO2 nanoparticles under UV and visible irradiation. J Mol Catal A Chem 261:131–138CrossRef
6.
go back to reference Carbajo J, Jiménez M, Miralles S, Malato S, Faraldos M, Bahamonde A (2016) Study of application of titania catalysts on solar photocatalysis: Influence of type of pollutants and water matrices. Chem Eng J 291:64–73CrossRef Carbajo J, Jiménez M, Miralles S, Malato S, Faraldos M, Bahamonde A (2016) Study of application of titania catalysts on solar photocatalysis: Influence of type of pollutants and water matrices. Chem Eng J 291:64–73CrossRef
7.
go back to reference Kaur A, Umar A, Kansal SK (2016) Heterogeneous photocatalytic studies of analgesic and non-steroidal anti-inflammatory drugs. Appl Catal A 510:134–155CrossRef Kaur A, Umar A, Kansal SK (2016) Heterogeneous photocatalytic studies of analgesic and non-steroidal anti-inflammatory drugs. Appl Catal A 510:134–155CrossRef
8.
go back to reference Kim DS, Kwak S-Y (2007) The hydrothermal synthesis of mesoporous TiO2 with high crystallinity, thermal stability, large surface area, and enhanced photocatalytic activity. Appl Catal A 323:110–118CrossRef Kim DS, Kwak S-Y (2007) The hydrothermal synthesis of mesoporous TiO2 with high crystallinity, thermal stability, large surface area, and enhanced photocatalytic activity. Appl Catal A 323:110–118CrossRef
9.
go back to reference Gautam A, Kshirsagar A, Biswas R, Banerjee S, Khanna PK (2016) Photodegradation of organic dyes based on anatase and rutile TiO2 nanoparticles. RCS Adv 6:2746–2759 Gautam A, Kshirsagar A, Biswas R, Banerjee S, Khanna PK (2016) Photodegradation of organic dyes based on anatase and rutile TiO2 nanoparticles. RCS Adv 6:2746–2759
10.
go back to reference Soni h, Kumar JN, Patel K, Kumar RN (2016) Photocatalytic decoloration of three commercial dyes in aqueous phase and industrial effluents using TiO2 nanoparticles. Desalin Water Treat 57:6355–6364CrossRef Soni h, Kumar JN, Patel K, Kumar RN (2016) Photocatalytic decoloration of three commercial dyes in aqueous phase and industrial effluents using TiO2 nanoparticles. Desalin Water Treat 57:6355–6364CrossRef
11.
go back to reference Barton I, Matejec V, Matousek J (2016) Photocatalytic activity of nanostructured TiO2 coating on glass slide and optical fibers for methylene blue or methyl orange decomposition under different light excitation. J Photochem Photobiol A 317:72–80CrossRef Barton I, Matejec V, Matousek J (2016) Photocatalytic activity of nanostructured TiO2 coating on glass slide and optical fibers for methylene blue or methyl orange decomposition under different light excitation. J Photochem Photobiol A 317:72–80CrossRef
12.
go back to reference Salvaggio MG, Passalacqua R, Abate S, Perathoner S, Centi G, Lanza M, Stassi A (2016) Functional nano-textured titania-coatings with self-cleaning and antireflective properties for photovoltaic surfaces. Sol Energy 125:227–242CrossRef Salvaggio MG, Passalacqua R, Abate S, Perathoner S, Centi G, Lanza M, Stassi A (2016) Functional nano-textured titania-coatings with self-cleaning and antireflective properties for photovoltaic surfaces. Sol Energy 125:227–242CrossRef
13.
go back to reference Sarkar D, Ishchuk S, Taffa DH, Kaynan N, Berke BA, Bendikov T, Yerushalmi R (2016) Oxygen-deficient titania with adjustable band positions and defects; Molecular layer deposition of hybrid organic–inorganic thin films as precursors for enhanced photocatalysis. J Phys Chem C 120:3853–3862CrossRef Sarkar D, Ishchuk S, Taffa DH, Kaynan N, Berke BA, Bendikov T, Yerushalmi R (2016) Oxygen-deficient titania with adjustable band positions and defects; Molecular layer deposition of hybrid organic–inorganic thin films as precursors for enhanced photocatalysis. J Phys Chem C 120:3853–3862CrossRef
14.
go back to reference Henkel B, Neubert T, Zabel S, Lamprecht C, Selhuber-Unkel C, Rätzke K, Strunskus T, Vergöhl M, Faupel Franz (2016) Photocatalytic properties of titania thin films prepared by sputtering versus evaporation and aging of induced oxygen vacancy defects. Appl Catal B 180:362–371CrossRef Henkel B, Neubert T, Zabel S, Lamprecht C, Selhuber-Unkel C, Rätzke K, Strunskus T, Vergöhl M, Faupel Franz (2016) Photocatalytic properties of titania thin films prepared by sputtering versus evaporation and aging of induced oxygen vacancy defects. Appl Catal B 180:362–371CrossRef
15.
go back to reference Bergamonti L, Bondioli F, Alfier I, Lorenzi A, Mattarozzi M, Predieri G, Lottici PP (2016) Photocatalytic self-cleaning TiO2 coatings on carbonatic stones. Appl Phys A 122:1–12CrossRef Bergamonti L, Bondioli F, Alfier I, Lorenzi A, Mattarozzi M, Predieri G, Lottici PP (2016) Photocatalytic self-cleaning TiO2 coatings on carbonatic stones. Appl Phys A 122:1–12CrossRef
16.
go back to reference Juang Y, Liu Y, Nurhayati E, Thuy NT, Huang C, Hu C-C (2016) Anodic fabrication of advanced titania nanotubes photocatalysts for photoelectrocatalysis decolorization of Orange G dye. Chemosphere 144:2462–2468CrossRef Juang Y, Liu Y, Nurhayati E, Thuy NT, Huang C, Hu C-C (2016) Anodic fabrication of advanced titania nanotubes photocatalysts for photoelectrocatalysis decolorization of Orange G dye. Chemosphere 144:2462–2468CrossRef
17.
go back to reference Jayamohan H, Smith YR, Gale BK, Mohanty SK, Misra M (2016) Photocatalytic microfluidic reactors utilizing titania nanotubes on titanium mesh for degradation of organic and biological contaminants. J Environ Chem Eng 4:657–663CrossRef Jayamohan H, Smith YR, Gale BK, Mohanty SK, Misra M (2016) Photocatalytic microfluidic reactors utilizing titania nanotubes on titanium mesh for degradation of organic and biological contaminants. J Environ Chem Eng 4:657–663CrossRef
18.
go back to reference Peng Y, Li M, Zhang S, Nie G, Qi M, Pan B (2015) Improved performance and prolonged lifetime of titania-based materials: sequential use as adsorbent and photocatalyst. Sci China Chem 58:1211–1219CrossRef Peng Y, Li M, Zhang S, Nie G, Qi M, Pan B (2015) Improved performance and prolonged lifetime of titania-based materials: sequential use as adsorbent and photocatalyst. Sci China Chem 58:1211–1219CrossRef
19.
go back to reference Gao H, Shangguan W, Guoxin H, Zhu K (2016) Preparation and photocatalytic performance of transparent titania film from monolayer titania quantum dots. Appl Catal B 180:416–423CrossRef Gao H, Shangguan W, Guoxin H, Zhu K (2016) Preparation and photocatalytic performance of transparent titania film from monolayer titania quantum dots. Appl Catal B 180:416–423CrossRef
20.
go back to reference Kassir M, Roques-Carmes T, Hamieh T, Toufaily J, Akil M, Barres O, Villiéras F (2015) Improvement of the photocatalytic activity of TiO2 induced by organic pollutant enrichment at the surface of the organografted catalyst. Colloid Surf A 485:73–83CrossRef Kassir M, Roques-Carmes T, Hamieh T, Toufaily J, Akil M, Barres O, Villiéras F (2015) Improvement of the photocatalytic activity of TiO2 induced by organic pollutant enrichment at the surface of the organografted catalyst. Colloid Surf A 485:73–83CrossRef
21.
go back to reference Feng Z, Wei W, Wang L, Hong R (2015) Hollow mesoporous titania microspheres: new technology and enhanced photocatalytic activity. Appl Surf Sci 357:759–765CrossRef Feng Z, Wei W, Wang L, Hong R (2015) Hollow mesoporous titania microspheres: new technology and enhanced photocatalytic activity. Appl Surf Sci 357:759–765CrossRef
22.
go back to reference Vajdaa K, Saszet K, Kedves EZ, Kása Z, Danciu V, Baia K, Magyaric K, Hernádi K, Kovács G, Pap Z (2016) Shape-controlled agglomeration of TiO2 nanoparticles. New insights on polycrystallinity vs. single crystals in photocatalysis. Ceram Int 42:3077–3087CrossRef Vajdaa K, Saszet K, Kedves EZ, Kása Z, Danciu V, Baia K, Magyaric K, Hernádi K, Kovács G, Pap Z (2016) Shape-controlled agglomeration of TiO2 nanoparticles. New insights on polycrystallinity vs. single crystals in photocatalysis. Ceram Int 42:3077–3087CrossRef
23.
go back to reference Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K (1999) Formation of titanium oxide nanotube. Langmuir 14:3160–3163CrossRef Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K (1999) Formation of titanium oxide nanotube. Langmuir 14:3160–3163CrossRef
24.
go back to reference Lai CW, Hamid SBA, Tan TL, Lee WH (2015) Rapid formation of 1D titanate nanotubes using alkaline hydrothermal treatment and its photocatalytic performance. J Nanomater 2015:1 Lai CW, Hamid SBA, Tan TL, Lee WH (2015) Rapid formation of 1D titanate nanotubes using alkaline hydrothermal treatment and its photocatalytic performance. J Nanomater 2015:1
25.
go back to reference Nguyen NH, Bai H (2015) Effect of washing pH on the properties of titanate nanotubes and its activity for photocatalytic oxidation of NO and NO2. Appl Surf Sci 355:672–680CrossRef Nguyen NH, Bai H (2015) Effect of washing pH on the properties of titanate nanotubes and its activity for photocatalytic oxidation of NO and NO2. Appl Surf Sci 355:672–680CrossRef
26.
go back to reference Nada A, Moustafa Y, Hamdy A (2014) Improvement of titanium dioxide nanotubes through study washing effect on hydrothermal. Br J Environ Sci 2:29–40 Nada A, Moustafa Y, Hamdy A (2014) Improvement of titanium dioxide nanotubes through study washing effect on hydrothermal. Br J Environ Sci 2:29–40
27.
go back to reference Mostafa NY, El-Bahy ZM (2015) Effect of microwave heating on the structure, morphology and photocatalytic activity of hydrogen titanate nanotubes. J Environ Chem Eng 3:744–751CrossRef Mostafa NY, El-Bahy ZM (2015) Effect of microwave heating on the structure, morphology and photocatalytic activity of hydrogen titanate nanotubes. J Environ Chem Eng 3:744–751CrossRef
28.
go back to reference Bilgin N, Agartan L, Jongee PA, Ozturk A (2015) Synthesis of TiO2 nanostructures via hydrothermal method. Ceram Trans 253:177–186 Bilgin N, Agartan L, Jongee PA, Ozturk A (2015) Synthesis of TiO2 nanostructures via hydrothermal method. Ceram Trans 253:177–186
29.
go back to reference Milanović M, Stijepović I, Nikolić LM (2010) Preparation and photocatalytic activity of the layered titanates. Process Appl Ceram 4(2):69–73CrossRef Milanović M, Stijepović I, Nikolić LM (2010) Preparation and photocatalytic activity of the layered titanates. Process Appl Ceram 4(2):69–73CrossRef
30.
go back to reference Xiong L, Yang Y, Mai J, Sun W, Zhang C, Wei D, Chen Q, Ni J (2010) Adsorption behavior of methylene blue onto titanate nanotubes. Chem Eng J 156:313–320CrossRef Xiong L, Yang Y, Mai J, Sun W, Zhang C, Wei D, Chen Q, Ni J (2010) Adsorption behavior of methylene blue onto titanate nanotubes. Chem Eng J 156:313–320CrossRef
31.
go back to reference Buchholcz B, Haspel H, Kukovecz Á, Kónya Z (2014) Low-temperature conversion of titanate nanotubes into nitrogen-doped TiO2 nanoparticles. CrystEngComm 16:7486–7492CrossRef Buchholcz B, Haspel H, Kukovecz Á, Kónya Z (2014) Low-temperature conversion of titanate nanotubes into nitrogen-doped TiO2 nanoparticles. CrystEngComm 16:7486–7492CrossRef
32.
go back to reference Wang N, Lin H, Li J, Zhang L, Lin C, Li X (2006) Crystalline Transition from H2Ti3O7 nanotubes to anatase nanocrystallines under low-temperature hydrothermal conditions. J Am Ceram Soc 89:3564–3566CrossRef Wang N, Lin H, Li J, Zhang L, Lin C, Li X (2006) Crystalline Transition from H2Ti3O7 nanotubes to anatase nanocrystallines under low-temperature hydrothermal conditions. J Am Ceram Soc 89:3564–3566CrossRef
33.
go back to reference Chen Q, Du GH, Zhang S, Peng L-M (2002) The structure of trititanate nanotubes. Acta Cryst B 58:587–593CrossRef Chen Q, Du GH, Zhang S, Peng L-M (2002) The structure of trititanate nanotubes. Acta Cryst B 58:587–593CrossRef
34.
go back to reference Suzuki Y, Yoshikawa S (2004) Synthesis and thermal analyses of TiO2-derived nanotubes prepared by the hydrothermal method. J Mater Res 19:982–985CrossRef Suzuki Y, Yoshikawa S (2004) Synthesis and thermal analyses of TiO2-derived nanotubes prepared by the hydrothermal method. J Mater Res 19:982–985CrossRef
35.
go back to reference Zhang M, Jin Z, Zhang J, Guo X, Yang J, Li W, Wang X, Zhang Z (2004) Effect of annealing temperature on morphology, structure and photocatalytic behavior of nanotubed H2Ti2O4(OH)2. J Mol Catal A 217:203–210CrossRef Zhang M, Jin Z, Zhang J, Guo X, Yang J, Li W, Wang X, Zhang Z (2004) Effect of annealing temperature on morphology, structure and photocatalytic behavior of nanotubed H2Ti2O4(OH)2. J Mol Catal A 217:203–210CrossRef
36.
go back to reference Yang J, Jin Z, Wang X, Li W, Zhang J, Zhang S, Guo X, Zhang Z (2003) Study on composition, structure and formation process of nanotube Na2Ti2O4(OH)2. Dalton Trans 20:3898–3901CrossRef Yang J, Jin Z, Wang X, Li W, Zhang J, Zhang S, Guo X, Zhang Z (2003) Study on composition, structure and formation process of nanotube Na2Ti2O4(OH)2. Dalton Trans 20:3898–3901CrossRef
37.
go back to reference Qamar M, Yoon CR, Oh HJ, Kim DH, Jho JH, Lee KS, Lee WJ, Lee HG, Kim SJ (2006) Effect of post treatments on the structure and thermal stability of titanate nanotubes. Nanotechnology 17:5922–5929CrossRef Qamar M, Yoon CR, Oh HJ, Kim DH, Jho JH, Lee KS, Lee WJ, Lee HG, Kim SJ (2006) Effect of post treatments on the structure and thermal stability of titanate nanotubes. Nanotechnology 17:5922–5929CrossRef
38.
go back to reference Ferreira OP, Souza Filho AG, Mendes Filho J, Alves OL (2006) Unveiling the structure and composition of titanium oxide nanotubes through ion exchange chemical reactions and thermal decomposition processes. J Braz Chem Soc 17:393–402CrossRef Ferreira OP, Souza Filho AG, Mendes Filho J, Alves OL (2006) Unveiling the structure and composition of titanium oxide nanotubes through ion exchange chemical reactions and thermal decomposition processes. J Braz Chem Soc 17:393–402CrossRef
39.
go back to reference Tsai C-C, Teng H (2006) Structural features of nanotubes synthesized from NaOH treatment on TiO2 with different post-treatments. Chem Mater 18:367–373CrossRef Tsai C-C, Teng H (2006) Structural features of nanotubes synthesized from NaOH treatment on TiO2 with different post-treatments. Chem Mater 18:367–373CrossRef
40.
go back to reference Morgado E Jr, de Abreu MAS, Pravia ORC, Marinkovic BA, Jardim PM, Rizzo FC, Araújo AS (2006) A study on the structure and thermal stability of titanate nanotubes as a function of sodium content. Solid State Sci 8:888–900CrossRef Morgado E Jr, de Abreu MAS, Pravia ORC, Marinkovic BA, Jardim PM, Rizzo FC, Araújo AS (2006) A study on the structure and thermal stability of titanate nanotubes as a function of sodium content. Solid State Sci 8:888–900CrossRef
41.
go back to reference Viana BC, Ferreira OP, Souza Filho AG, Mendes Filho J, Alves OL (2009) Structural, morphological and vibrational properties of titanate nanotubes and nanoribbons. J Braz Chem Soc 20:167–175CrossRef Viana BC, Ferreira OP, Souza Filho AG, Mendes Filho J, Alves OL (2009) Structural, morphological and vibrational properties of titanate nanotubes and nanoribbons. J Braz Chem Soc 20:167–175CrossRef
42.
go back to reference Morgado E Jr, de Abreu MAS, Moure GT, Marinkovic BA, Jardim PM, Araujo AS (2007) Characterization of nanostructured titanates obtained by alkali treatment of TiO2-anatases with distinct crystal sizes. Chem Mater 19:665–676CrossRef Morgado E Jr, de Abreu MAS, Moure GT, Marinkovic BA, Jardim PM, Araujo AS (2007) Characterization of nanostructured titanates obtained by alkali treatment of TiO2-anatases with distinct crystal sizes. Chem Mater 19:665–676CrossRef
43.
go back to reference Ma R, Bando Y, Sasaki T (2003) Nanotubes of lepidocrocite titanates. Chem Phys Lett 380:577–582CrossRef Ma R, Bando Y, Sasaki T (2003) Nanotubes of lepidocrocite titanates. Chem Phys Lett 380:577–582CrossRef
44.
go back to reference Brunatova T, Popelkova D, Wan W, Oleynikov P, Danis S, Zou X, Kuzel R (2014) Study of titanate nanotubes by X-ray and electro diffraction and electron microscopy. Mater Charact 87:166–171CrossRef Brunatova T, Popelkova D, Wan W, Oleynikov P, Danis S, Zou X, Kuzel R (2014) Study of titanate nanotubes by X-ray and electro diffraction and electron microscopy. Mater Charact 87:166–171CrossRef
46.
go back to reference Wang YQ, Hu GQ, Duan XF, Sun HL, Xue QK (2002) Microstructure and formation mechanism of titanium dioxide nanotubes. Chem Phys Lett 365:427–431CrossRef Wang YQ, Hu GQ, Duan XF, Sun HL, Xue QK (2002) Microstructure and formation mechanism of titanium dioxide nanotubes. Chem Phys Lett 365:427–431CrossRef
47.
go back to reference Yao BD, Chan YF, Zhang XY, Zhang WF, Yang ZY, Wang N (2003) Formation mechanism of TiO2 nanotubes. Appl Phys Lett 82:281–283CrossRef Yao BD, Chan YF, Zhang XY, Zhang WF, Yang ZY, Wang N (2003) Formation mechanism of TiO2 nanotubes. Appl Phys Lett 82:281–283CrossRef
48.
go back to reference Sauvet A-L, Baliteau S, Lopez C, Fabry P (2004) Synthesis and characterization of sodium titanates Na2Ti3O7 and Na2Ti6O13. J Solid State Chem 177:4508–4515CrossRef Sauvet A-L, Baliteau S, Lopez C, Fabry P (2004) Synthesis and characterization of sodium titanates Na2Ti3O7 and Na2Ti6O13. J Solid State Chem 177:4508–4515CrossRef
49.
go back to reference Haimi E, Lipsonen H, Larismaa J, Kapulainen M, Krzak-Ros J, Hannula S-P (2011) Optical and structural properties of nanocrystalline anatase (TiO2) thin films prepared by non-aqueous sol–gel dip-coating. Thin Solid Films 519:5882–5886CrossRef Haimi E, Lipsonen H, Larismaa J, Kapulainen M, Krzak-Ros J, Hannula S-P (2011) Optical and structural properties of nanocrystalline anatase (TiO2) thin films prepared by non-aqueous sol–gel dip-coating. Thin Solid Films 519:5882–5886CrossRef
50.
go back to reference Gao T, Jelle BP (2013) Thermal conductivity of TiO2 nanotubes. J Phys Chem C 117:1401–1408CrossRef Gao T, Jelle BP (2013) Thermal conductivity of TiO2 nanotubes. J Phys Chem C 117:1401–1408CrossRef
51.
go back to reference Chen Q, Zhou WZ, Du GH, Peng LM (2002) Trititanate nanotubes made via a single alkali treatment. Adv Mater 14:1208–1211CrossRef Chen Q, Zhou WZ, Du GH, Peng LM (2002) Trititanate nanotubes made via a single alkali treatment. Adv Mater 14:1208–1211CrossRef
52.
go back to reference Du GH, Chen Q, Che RC, Yuan ZY, Peng LM (2001) Preparation and structure analysis of titanium oxide nanotubes. Appl Phys Lett 79:3702–3704CrossRef Du GH, Chen Q, Che RC, Yuan ZY, Peng LM (2001) Preparation and structure analysis of titanium oxide nanotubes. Appl Phys Lett 79:3702–3704CrossRef
53.
go back to reference Gao Y, Masudaa Y, Seo W-S, Ohta H, Koumoto K (2004) TiO2 nanoparticles prepared using an aqueous peroxotitanate solution. Ceram Int 30:1365–1368CrossRef Gao Y, Masudaa Y, Seo W-S, Ohta H, Koumoto K (2004) TiO2 nanoparticles prepared using an aqueous peroxotitanate solution. Ceram Int 30:1365–1368CrossRef
54.
go back to reference Toledo-Antonio JA, Capula S, Cortés-Jácome MA, Angeles-Chávez C, López-Salinas E, Ferrat G, Navarrete J, Escobar J (2007) Low-temperature FTIR study of CO adsorption on titania nanotubes. J Phys Chem C 111:10799–10805CrossRef Toledo-Antonio JA, Capula S, Cortés-Jácome MA, Angeles-Chávez C, López-Salinas E, Ferrat G, Navarrete J, Escobar J (2007) Low-temperature FTIR study of CO adsorption on titania nanotubes. J Phys Chem C 111:10799–10805CrossRef
55.
go back to reference Byrne MT, McCarthy JE, Bent M, Blake R, Gun’ko YK, Horvath E, Konya Z, Kukovecz A, Kiricsi I, Coleman JN (2007) Chemical functionalisation of titania nanotubes and their utilisation for the fabrication of reinforced polystyrene composites. J Mater Chem 17:2351–2358CrossRef Byrne MT, McCarthy JE, Bent M, Blake R, Gun’ko YK, Horvath E, Konya Z, Kukovecz A, Kiricsi I, Coleman JN (2007) Chemical functionalisation of titania nanotubes and their utilisation for the fabrication of reinforced polystyrene composites. J Mater Chem 17:2351–2358CrossRef
56.
go back to reference Nikolić LM, Maletin M, Ferreira P, Vilarinho PM (2008) Synthesis and characterization of one-dimensional titanate structure. Process Appl Ceram 2:109–114 CrossRef Nikolić LM, Maletin M, Ferreira P, Vilarinho PM (2008) Synthesis and characterization of one-dimensional titanate structure. Process Appl Ceram 2:109–114 CrossRef
57.
go back to reference Sun X, Li Y (2003) Synthesis and characterization of ion-exchangeable titanate nanotubes. Chem Eur J 9:2229–2238CrossRef Sun X, Li Y (2003) Synthesis and characterization of ion-exchangeable titanate nanotubes. Chem Eur J 9:2229–2238CrossRef
58.
go back to reference Thorne A, Kruth A, Tunstall D, Irvine JTS, Zhou W (2005) Formation, structure, and stability of titanate nanotubes and their proton conductivity. J Phys Chem B 109:5439–5444CrossRef Thorne A, Kruth A, Tunstall D, Irvine JTS, Zhou W (2005) Formation, structure, and stability of titanate nanotubes and their proton conductivity. J Phys Chem B 109:5439–5444CrossRef
59.
go back to reference Bao-Li T, Zu-Liang DU, Yan-Mei MA, Xue-Fei LI, Qi-Liang CUI, Tian CUI, Bing-Bing LIU, Guang-Tian ZOU (2010) Raman investigation of sodium titanate nanotubes under hydrostatic pressures up to 26.9 GPa. Chin Phys Lett 27:026103CrossRef Bao-Li T, Zu-Liang DU, Yan-Mei MA, Xue-Fei LI, Qi-Liang CUI, Tian CUI, Bing-Bing LIU, Guang-Tian ZOU (2010) Raman investigation of sodium titanate nanotubes under hydrostatic pressures up to 26.9 GPa. Chin Phys Lett 27:026103CrossRef
60.
go back to reference Hodos M, Horváth E, Haspel H, Kukovecz Á, Kónya Z, Kiricsi I (2004) Photosensitization of ion-exchangeable titanate nanotubes by CdS nanoparticles. Chem Phys Lett 399:512–515CrossRef Hodos M, Horváth E, Haspel H, Kukovecz Á, Kónya Z, Kiricsi I (2004) Photosensitization of ion-exchangeable titanate nanotubes by CdS nanoparticles. Chem Phys Lett 399:512–515CrossRef
61.
go back to reference Gao T, Fjellvåg H, Norby P (2009) Crystal structures of titanate nanotubes: a Raman scattering study. Inorg Chem 48:1423–1432CrossRef Gao T, Fjellvåg H, Norby P (2009) Crystal structures of titanate nanotubes: a Raman scattering study. Inorg Chem 48:1423–1432CrossRef
62.
go back to reference Gupta SK, Desai R, Jha PK, Sahoo S, Kirin D (2010) Titanium dioxide synthesized using titanium chloride: size effect study using Raman spectroscopy and photoluminescence. J Raman Spectrosc 41:350–355 Gupta SK, Desai R, Jha PK, Sahoo S, Kirin D (2010) Titanium dioxide synthesized using titanium chloride: size effect study using Raman spectroscopy and photoluminescence. J Raman Spectrosc 41:350–355
63.
go back to reference Ohsaka T, Izumi F, Fujiki Y (1978) Raman spectrum of anatase TiO2. J Raman Spectrosc 7:321–324CrossRef Ohsaka T, Izumi F, Fujiki Y (1978) Raman spectrum of anatase TiO2. J Raman Spectrosc 7:321–324CrossRef
64.
go back to reference Balachandran U, Eror NG (1982) Raman spectra of titanium dioxide. J Solid State Chem 42:276–282CrossRef Balachandran U, Eror NG (1982) Raman spectra of titanium dioxide. J Solid State Chem 42:276–282CrossRef
65.
go back to reference Tian F, Zhang YP, Zhang J, Pan CX (2012) Raman spectroscopy: a new approach to measure the percentage of anatase TiO2 exposed (001) facets. J Phys Chem C 116:7515–7519CrossRef Tian F, Zhang YP, Zhang J, Pan CX (2012) Raman spectroscopy: a new approach to measure the percentage of anatase TiO2 exposed (001) facets. J Phys Chem C 116:7515–7519CrossRef
66.
go back to reference Asapu VR, Palla VM, Wang B, Guo Z, Sadu R, Chen DH (2011) Phosphorus-doped titania nanotubes with enhanced photocatalytic activity. J Photochem Photobiol A 225:81–87CrossRef Asapu VR, Palla VM, Wang B, Guo Z, Sadu R, Chen DH (2011) Phosphorus-doped titania nanotubes with enhanced photocatalytic activity. J Photochem Photobiol A 225:81–87CrossRef
67.
go back to reference Fen LB, Han TK, Nee NM, Ang BC, Johan MR (2011) Physico-chemical properties of titania nanotubes synthesized via hydrothermal and annealing treatment. Appl Surf Sci 258:431–435CrossRef Fen LB, Han TK, Nee NM, Ang BC, Johan MR (2011) Physico-chemical properties of titania nanotubes synthesized via hydrothermal and annealing treatment. Appl Surf Sci 258:431–435CrossRef
68.
go back to reference Wang N, Lin H, Li J, Yang X, Chi B, Lin C (2006) Effect of annealing temperature on phase transition and optical property of titanate nanotubes prepared by ion exchange approach. J Alloys Compd 424:311–314CrossRef Wang N, Lin H, Li J, Yang X, Chi B, Lin C (2006) Effect of annealing temperature on phase transition and optical property of titanate nanotubes prepared by ion exchange approach. J Alloys Compd 424:311–314CrossRef
69.
go back to reference Xiong L, Sun W, Yang Y, Chen C, Ni Jinren (2011) Heterogeneous photocatalysis of methylene blue over titanate nanotubes: effect of adsorption. J Colloid Interf Sci 356:211–216CrossRef Xiong L, Sun W, Yang Y, Chen C, Ni Jinren (2011) Heterogeneous photocatalysis of methylene blue over titanate nanotubes: effect of adsorption. J Colloid Interf Sci 356:211–216CrossRef
70.
go back to reference Yu J, Yu H, Cheng B, Trapalis C (2006) Effect of calcination temperature on microstructures and photocatalytic activity of titanate nanotubes. J Mol Catal A 249:135–142CrossRef Yu J, Yu H, Cheng B, Trapalis C (2006) Effect of calcination temperature on microstructures and photocatalytic activity of titanate nanotubes. J Mol Catal A 249:135–142CrossRef
71.
go back to reference Feng J, Zhu J, Lv W, Li J, Yan W (2015) Effect of hydroxyl group of carboxylic acids on the adsorption of acid red G and methylene blue on TiO2. Chem Eng J 269:316–322CrossRef Feng J, Zhu J, Lv W, Li J, Yan W (2015) Effect of hydroxyl group of carboxylic acids on the adsorption of acid red G and methylene blue on TiO2. Chem Eng J 269:316–322CrossRef
72.
go back to reference Vuk AŠ, Ješe R, Orel B, Dražič G (2005) The effect of surface hydroxyl groups on the adsorption properties of nanocrystalline TiO2 films. Int J Photoenergy 7:163–168CrossRef Vuk AŠ, Ješe R, Orel B, Dražič G (2005) The effect of surface hydroxyl groups on the adsorption properties of nanocrystalline TiO2 films. Int J Photoenergy 7:163–168CrossRef
73.
go back to reference Chatterjee S, Tyagi AK, Ayyub P (2014) Efficient photocatalytic degradation of Rhodamine B dye by aligned arrays of self-assembled hydrogen titanate nanotubes. J Nanomater 2014:7CrossRef Chatterjee S, Tyagi AK, Ayyub P (2014) Efficient photocatalytic degradation of Rhodamine B dye by aligned arrays of self-assembled hydrogen titanate nanotubes. J Nanomater 2014:7CrossRef
74.
go back to reference Inagaki M, Kondo N, Nonaka R, Ito E, Toyoda M, Sogabe K, Tsumura T (2009) Structure and photoactivity of titania derived from nanotubes and nanofibers. J Hazard Mater 161:1514–1521CrossRef Inagaki M, Kondo N, Nonaka R, Ito E, Toyoda M, Sogabe K, Tsumura T (2009) Structure and photoactivity of titania derived from nanotubes and nanofibers. J Hazard Mater 161:1514–1521CrossRef
Metadata
Title
Crystal structure and photocatalytic properties of titanate nanotubes prepared by chemical processing and subsequent annealing
Authors
Saima Ali
Henrika Granbohm
Yanling Ge
Vivek Kumar Singh
Frans Nilsén
Simo-Pekka Hannula
Publication date
04-05-2016
Publisher
Springer US
Published in
Journal of Materials Science / Issue 15/2016
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0014-5

Other articles of this Issue 15/2016

Journal of Materials Science 15/2016 Go to the issue

Premium Partners